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Abstract

Models of rational expectations endow agents with precise knowledge of the

probability laws inside the models. This assumption becomes more tenuous

when a model’s performance is highly sensitive to the parameters that are

difficult to estimate directly, i.e., when a model relies on “dark matter.” We

propose new measures of model fragility by quantifying the informational

burden that a rational expectations model places on the agents. By measuring

the informativeness of the cross-equation restrictions implied by a model, our

measures can systematically detect the direction in the parameter space in which

the model’s performance is the most fragile. Our methodology provides new

ways to conduct sensitivity analysis on quantitative models. It helps identify

situations where parameter or model uncertainty cannot be ignored. It also

helps with evaluating competing classes of models that try to explain the same

set of empirical phenomena from the perspective of the robustness of their

implications.
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1 Introduction

The assumption of rational expectations (RE) is a predominant and powerful technique

in quantitative economic analysis. It ties down the beliefs of economic agents by

endowing them with precise knowledge of the probability law implied by an economic

model. This assumption is usually justified as a limit resulting from a sufficiently long

history of learning from a wealth of data, which allows the model builders to presume

RE as an approximation of the true belief formation process (see Hansen (2007)).1

While the intention of the RE assumption is to discipline agents’ beliefs, its use in

practice sometimes implies the opposite. For example, if the model output is sensitive

to small changes in a parameter that is weakly identified in the data, assuming precise

knowledge of the parameter essentially gives the modeler an additional degree of

freedom. In this paper we attempt to quantify the degree of fragility of the RE

assumption by measuring the informational burden it places on the economic agents.

To fix the ideas, consider a representative-agent model designed to explain the

observed dynamics of certain asset prices. As a part of the explanation, the model

appeals to the dynamics of fundamental data described by a known probability law

parameterized by θ. Under the rational expectations assumption, the representative

agent knows the true value of the parameter vector, θ0. The RE equilibrium can

be viewed as a tractable approximation to a more general economy, in which the

representative agent maintains nontrivial uncertainty about the true parameter values

based on all the information available and continues to learn from new data.

A necessary condition for the RE assumption to be a good approximation in this

context is that the main implications of the RE model for the joint dynamics of

prices and fundamentals should not be sensitive to the exact parameter values the

agent contemplates as similarly likely to θ0, given the remaining uncertainty she faces.

Without this condition, we cannot claim that the uncertainty the agent maintains

about θ0 has no impact on prices. In other words, a RE model with parameters θ0 is

1See Blume and Easley (2010) for a survey of the literature on convergence to rational expectations
equilibria in models with various belief formation processes.
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not a robust explanation of an empirical phenomenon if a RE model with parameters

θ′, which the agent considers just as plausible based on the information available,

produces drastically different model predictions.

The above criterion connects the validity of the RE assumption to the subjective

beliefs of the agent. Applying the criterion requires a plausible specification of the

agent’s beliefs regarding θ. A natural benchmark for such beliefs is the belief an agent

would form based on available historical data on fundamentals. Under this benchmark,

the economic agent is placed on a roughly equal footing with the econometrician in

terms of their information sets. We label a RE model that fails to satisfy the above

robustness requirement under plausible subjective beliefs as fragile.

Our robustness requirement is relatively weak. Passing the above requirement is

necessary but not sufficient for justifying the RE approximation. In particular, even

if the model produces similar implications for prices under all of the relatively likely

parameter values, ignoring the uncertainty faced by the representative agent may still

distort the key implications of the model. The reason is that in a model in which the

agent entertains uncertainty about the parameter values, prices depend on the entire

subjective distribution over the parameter values, hence low-probability parameter

configurations may have a disproportionately large effect on prices.

It is convenient to re-state our robustness criterion in a slightly different form. After

learning about the parameters from fundamental data, the agent will consider a subset

of the parameter values as more likely. If the model produces similar implications for

prices under all of these likely parameter values, an econometrician with access to the

same set of fundamental data should not derive significant incremental information

about the parameters by imposing cross-equation restrictions on fundamental data

and prices. In other words, the appearance of cross-equation restrictions in a RE

model being too informative about certain parameters relative to the information

derived from fundamental data is a flip side of the lack of model robustness: those

tightly restricted yet hard-to-measure inputs form the “dark matter” that is critical

for the model’s predictions.
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Figure 1: An example of “informative” cross-equation restrictions.

Figure 1 captures the essence of the above discussion. An econometrician observes

fundamental data and forms a posterior belief about a parameter θ, which is represented

by the distribution in the left panel. Suppose that the prices P implied by a RE model

are sensitive to θ, i.e., the derivative ∂P/∂θ is large enough that the model-implied

prices P (θ) are statistically consistent with the price data only over a very small set of

values of θ (see the middle panel). In this case, by imposing the relationship between

prices and θ implied by the model, or, in other words, a cross-equation restriction,

the econometrician obtains a constrained posterior for θ (see the right panel) that is

much more concentrated than the distribution she was able to establish using only

the fundamental data. This discrepancy shows that the model’s pricing restriction is

highly informative about the parameter θ. It also suggests that because prices are so

sensitive to θ, the RE model that ignores any parameter uncertainty is not a robust

approximation of a model in which the agent maintains realistic uncertainty about θ.

Ignoring the considerations of robustness when applying the RE framework can

lead to misleading conclusions. The RE model appears successful since it “explains”

asset prices with a carefully calibrated value of θ. As the flat distribution in the left

panel of Figure 1 indicates, based on the fundamental data alone, there is a wide

range of parameter values we cannot reject using standard statistical methods such as
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likelihood ratio tests, and that includes the value picked by the RE model. Yet, our

discussion highlights the lack of robustness of such an explanation – model implications

change drastically when we change θ by a “small amount”, measured with respect to

the information available about θ from the fundamental data. Thus, the success of

the model crucially depends on its “dark matter” inputs — the particular belief it

bestows on the agent.

To operationalize the idea, we develop two measures to quantify the informativeness

of the cross-equation restrictions. The first measure is the asymptotic information

ratio, which applies in large sample. This measure is based on the comparison between

the Fisher information matrix implied by the unconstrained and the constrained

likelihood functions (the constraint being the cross-equation restrictions). Intuitively,

this information ratio shows how much more difficult it is to estimate various smooth

functions of model parameters in large samples without imposing cross-equation

restrictions than with the restrictions, which is based on the amount of extra data

needed (on average) to raise the precision of the unconstrained estimator to the

same level as the constrained estimator. This measure can also be interpreted in

terms of asymptotic detection rates – it quantifies asymptotically the gain in the

econometrician’s ability to distinguish statistically various parameter configurations

that results from imposing cross-equation restrictions.

Our second measure is the finite-sample information ratio. In finite sample,

the informativeness of cross-equation restrictions is reflected in their impact on the

constrained posterior distribution of model parameters. We quantify the discrepancy

between the unconstrained and constrained posterior distributions of model parameters

using the relative entropy of the two distributions. Then, we provide a sample-size

interpretation of our measure by finding the average amount of extra fundamental data

needed to generate as large a shift – measured by relative entropy – in the posterior

parameter distribution implied by the unconstrained model. Finally, we establish

asymptotic equivalence between our two measures, which we make precise below.

Our results can be interpreted as a rigorous extension of the common practice
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of using sensitivity analysis to assess the robustness of model implications. The key

implications of a model are considered robust if they are not excessively sensitive to

small perturbations in model parameters. However, such practice is ad hoc both in

terms of how to determine the relevant perturbation magnitude and how to define

“excessive sensitivity.” Moreover, it is difficult to generalize the traditional sensitivity

analysis to multivariate settings. Model fragility is generally not fully revealed by

perturbing parameters one at a time – one must contemplate all possible multivariate

perturbations, making the ad hoc approach essentially infeasible for high-dimensional

problems. Our methodology overcomes these difficulties. In fact, as one of the

outputs of the asymptotic information ratio calculation, we identify the direction in

the parameter space in which the model is most fragile.

Another approach to judging the robustness of a model is to test it using additional

data. If a model is misspecified, further testable restrictions may reveal that. This

approach has limitations as a general tool for our purposes. In many cases it takes

subjective judgment to determine what predictions of the model should be tested to

provide meaningful evidence of misspecification, since any model is only an approximate

description of reality. Moreover, a model that passes certain additional tests may still

be fragile in the sense of placing too much informational burden on the agents.

As an illustration, we use the fragility measures to analyze the robustness of a class

of disaster risk models. In these models, the parameters that are difficult to estimate

from the data are those describing the likelihood and the magnitude of the disasters.2

For any given value of the coefficient of relative risk aversion γ, we compute the

asymptotic information ratio for all “acceptable” calibrations, i.e., parameter values

that cannot be rejected by the consumption data based on a likelihood ratio test.

With γ = 3, the asymptotic information ratio ranges from 24.5 to 37,000. This means

that the economic agent within a model would require a data sample of 24 to 37,000

2A few papers have pointed out the challenges in testing disaster risk models. Zin (2002) shows
that certain specifications of higher-order moments in the endowment growth distribution can help
the model fit the empirical evidence while being difficult to reject in the data. In his 2008 Princeton
Finance Lectures, John Campbell suggested that variable risk of rare disasters might be the “dark
matter for economists.”
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times the length of the available historical sample in order to match the information

content of the pricing restrictions implied by the model. The information ratio drops

with higher risk aversion. When γ = 24, the lowest asymptotic information ratio is 1.8.

We obtain similar results using the finite-sample information ratio. Thus, according

to our measures, model specifications with relatively high risk aversion coefficients are

much less fragile than those with low γ.

We then consider the case where the risk aversion coefficient γ is estimated jointly

with the rest of the parameters. We decompose the information provided by the

cross-equation restrictions into one part about γ and the other about the disaster

parameters. With an uninformative prior on γ, we find that asset prices are informative

mostly about γ, whereas the information ratio for the disaster probability and size

is close to 1. In contrast, a prior that strongly favors low values of γ leads to large

information ratios on the disaster parameters. These results further highlight the

relatively high fragility of models that attach high ex ante likelihood to smaller values

of the risk aversion parameter.

There are a few alternative interpretations of highly informative cross-equation

restrictions. First, agents might indeed have stronger beliefs about certain parameters

than what can be justified by the data available to the econometrician. These beliefs

may not be anchored to the data (e.g., driven by investor sentiment), in which case our

information criteria no longer apply. However, if strong beliefs are to be justified within

the rational expectations framework, then understanding their sources (such as extra

data or aggregation of private information) should be viewed as a key requirement for

declaring a model as an explanation of the data. For example, in the context of rare

disasters, Barro (2006), Barro and Ursua (2011), and Nakamura, Steinsson, Barro,

and Ursa (2012) explore international macroeconomic data, which provide further

information about disaster risk.

Second, informative cross-equation restrictions may imply that the canonical

RE assumption, under which agents have precise ex ante knowledge of the model

parameters, is not an acceptable approximation to the belief-formation process. Prices
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may appear informative because we have ignored important uncertainty the agent

faces when we adopt the RE assumption. Instead, the model should explicitly describe

the evolution of agents’ beliefs, e.g., through Bayesian learning. Our methodology

extends naturally to such settings and allows us to draw inference about the fragility

of the model’s predictions with respect to the assumed prior beliefs of the agents.

Third, informative cross-equation restrictions could imply model misspecification

beyond parameter uncertainty. For example, the disaster risk model under considera-

tion may be omitting some economically significant sources of risk – incorporating them

into the model could make the model less fragile, meaning that consumption disasters

need not be as large and rare (not so dark) as implied by the original specification.

Hansen (2007) discusses extensively concerns about the informational burden

that rational expectations models place on the agents, which is one of the key mo-

tivations for research in Bayesian learning, model ambiguity, and robustness.3 In

particular, the literature on robustness in macroeconomic models (see Hansen and

Sargent, 2008; Epstein and Schneider, 2010, for a survey of this literature) recognizes

that the traditional assumption of rational expectations is not reasonable in certain

contexts. This literature explicitly generalizes such models to incorporate robustness

considerations into agents’ decision problems. Our approach is complementary to

this line of research in that we propose a general methodology for measuring and

detecting the fragility of rational expectations models, thus identifying situations in

which parameter uncertainty and robustness could be particularly important, but we

do not take a stand on how fragile models need to be modified.

Our work is related to the broader body of work on the effects of parameter

uncertainty in economic models. Weitzman (2007) argues that instead of the disaster

risk being represented by a rare event with a small, precisely known probability, such

risk arises naturally because of the agents’ imperfect knowledge of the tail distribution

of consumption growth. Wachter (2008) and Collin-Dufresne, Johannes, and Lochstoer

3See Gilboa and Schmeidler (1989), Epstein and Schneider (2003), Hansen and Sargent (2001,
2008), and Klibanoff, Marinacci, and Mukerji (2005), among others.
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(2013) analyze the effect of learning in such models. They find that time-variation in

estimated disaster probabilities has a first-order effect on equilibrium dynamics.

Our work is connected to the literature in rational expectations econometrics,

where the cross-equation restrictions have been used extensively to gain efficiency in

estimating the structural parameters.4 For the econometrician, the danger of imposing

RE in the presence of “dark matter” is that it can lead to unjustified tight confidence

intervals for the constrained estimator that will likely fail to contain the true parameter

value. More broadly, the common practice of post-selection inference can become

quite misleading in the presence of “dark matter”.5 Our information measures can be

used to guard against selecting fragile models in such practice.

Given the basic nature of the problem, our methodology has a broad range of

applications. In addition to its applications in the macro-finance area, it should be

useful in evaluating and estimating structural models in many other areas of economics.

2 Illustration with a Disaster Risk Model

Before introducing the fragility measures, we use a simple example to illustrate

scenarios in which the informativeness of the cross-equation restrictions in a rational

expectations model serves as a signal for model fragility.

2.1 Model setup

We consider an endowment economy that is exposed to the risks of rare economic

disasters. The setting is similar to Barro (2006). The log growth rate of aggregate

4For classic examples, see Saracoglu and Sargent (1978), Hansen and Sargent (1980), Campbell
and Shiller (1988), among others, and textbook treatments by Lucas and Sargent (1981), Hansen
and Sargent (1991).

5Berk, Brown, Buja, Zhang, and Zhao (2012) argue that the selected model based on data-driven
methods is itself stochastic, which should be incorporated into inference of parameters.
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consumption gt and the excess log return of the market portfolio rt follow the process gt

rt

 = (1− zt)ut − zt

 vt

bvt + εt

 , (1)

where zt is i.i.d. Bernoulli and takes the value of 1 and 0 with probability p and 1− p.

Outside of disasters (zt = 0), gt and rt are jointly normal with mean (µ, ηt), where µ

and ηt are the expected consumption growth and conditional expected excess return

in a non-disaster state (or conditional equity premium), respectively. Their covariance

in the non-disaster state is

Σ =

 σ2 ρστ

ρστ τ 2

 . (2)

In the case of a disaster (zt = 1), the log of the decline in consumption vt follows a

truncated exponential distribution, vt ∼ 1{v≥v}λe
−λ(v−v), with the lower bound for

disaster size equal to v. Thus, conditional on a disaster, the average disaster size is

v + 1/λ. The log excess return in a disaster is linked to the decline in consumption

with a leverage factor b. In addition, we add an independent shock εt ∼ N(0, ν2) to rt

so that the excess return in a disaster does not have to be perfectly correlated with

aggregate consumption.

The representative agent knows the value of all the parameters in this model except

for p, and he observes zt.
6 We denote the true value for p to be p0. We consider two

different specifications of the agent’s beliefs about p. First, under rational learning, he

starts with an uninformative prior about p at t = 0, which follows a Beta distribution,

π0(p) = Beta(α0, β0) = pα0−1(1− p)β0−1, (3)

and he updates the belief about p over time based on the observed history of zt. Then,

6This assumption helps simplify the analysis of the learning problem. In particular, the history of
zt is sufficient for Bayesian updating on p. Collin-Dufresne, Johannes, and Lochstoer (2013) analyze
a disaster risk model where agents learn about multiple parameters simultaneously.
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at time t, his posterior belief about p will still follow a Beta distribution,

πt(p) = Beta(αt, βt), (4)

with

αt = αt−1 + zt, βt = βt−1 + (1− zt). (5)

The posterior belief implies that the conditional expectation of p is Eat [p] = αt/(αt+βt),

where Ea denotes that the expectation is taken under the agent’s information set.

Second, we also consider the case where the agent has precise but irrational beliefs

about the disaster probability. Specifically, Eat [p] = p1, where p1 is different from p0.

The representative agent has time-additive isoelastic utility: u(c) = c1−γ/(1− γ),

where γ > 0 is the coefficient of relative risk aversion. The consumption Euler equation

for log excess returns is:

1 = Eat
[

mt+1

Eat [mt+1]
ert+1

]
= Eat

[
(Ct+1/Ct)

−γ

Eat [(Ct+1/Ct)−γ]
ert+1

]
. (6)

The Euler equation implies that the conditional equity premium is approximately7

ηt ≈ γρστ − τ 2

2
+ eγµ−

γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2
ν2 e(γ−b)v

λ+ b− γ

)
Eat [p]

1− Eat [p]
.

The first two terms on the right-hand side give the risk premium for the exposure

of the market portfolio to Gaussian shocks in consumption growth (with convexity

adjustment). The third term gives the disaster risk premium. We need λ > γ for the

risk premium to be finite, which sets an upper bound for the average disaster size and

dictates how fat the tail of the disaster size distribution can be.

The fact that the risk premium becomes unbounded as λ approaches γ is a key

feature of this model. In particular, when the (perceived) probability of disaster is

small, we can still generate a high risk premium by increasing the average disaster

7The approximation we make here is eηt+
τ2

2 −γρστ ≈ 1 + ηt + τ2

2 − γρστ , which works for the
parameter values we consider.
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size (reducing λ), although a smaller λ will also make the risk premium more sensitive

to changes in Eat [p]. This sensitivity is crucial in our discussion of model fragility.

2.2 Learning, irrational beliefs, and rational expectation

We use the disaster risk model above as a laboratory to analyze whether the RE

assumption provides a good approximation of the true model. Under the RE assump-

tion, the agent knows the true value of p, which is denoted as p0. Then, the equity

premium outside of disasters is constant and is obtained by setting Eat [p] = p0 in (2.1):

η ≈ γρστ − τ 2

2
+ eγµ−

γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2
ν2 e(γ−b)v

λ+ b− γ

)
p0

1− p0

.

We consider two related tests from the perspective of the econometrician. First, we

examine how reliable statistical inference about the disaster probability p is under the

RE assumption. Second, we examine how often the econometrician can reject the RE

model by performing a standard specification test.

Given the data on consumption and returns, the econometrician can estimate p un-

der both the unconstrained model and the RE model. According to the unconstrained

model (1), the only relevant information for the estimation of p is the history of zt.

The maximum likelihood estimator (MLE) for p based on n observations (z1, · · · , zn)

is asymptotically normal,

p̂
D−→ N

(
p0,

p0 (1− p0)

n

)
. (7)

According to the RE model (with the cross-equation restriction (2.2) imposed in the

model (1)), the econometrician estimates p using both the macro data (gt, zt) and the

returns rt. In this case, the MLE of p has the following asymptotic distribution:

p̂c
D−→ N

(
p0,

1

n

1
1

p0(1−p0)
+ (1− p0) η̇(p0)2

(1−ρ2)τ2

)
, (8)
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where

η̇(p) ≡ eγµ−
γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2
ν2 e(γ−b)v

λ+ b− γ

)
1

(1− p)2
(9)

is the sensitivity of the equity premium with respect to the disaster probability p.

To measure how much extra precision is gained in the estimation of p by imposing

the cross-equation restriction, we compute the ratio of the asymptotic variance of the

unconstrained estimator (7) to that of the constrained estimator (8),

% = 1 +
η̇(p)2

(1− ρ2)τ 2
p(1− p)2 . (10)

Equation (10) shows that, holding p fixed, the cross-equation restriction is highly

informative about p when the model-implied equity premium is highly sensitive to

the disaster probability (η̇(p) is large) and the noise term in returns has low variance

((1− ρ2)τ 2 is small).

To conduct the experiment, we simulate data (gt, zt, rt) from 0 to T0 +T according

to a specific model of beliefs (the true model). The econometrician only observes

the data from T0 to T0 + T , whereas the agent observes the entire history of data.

Having T0 > 0 captures the possibility that the agent has more information than the

econometrician. We study three alternative specifications of the agent’s beliefs:

Model 1: Rational learning with large T0. In this case, the agent has significant

amount of information about p by time T0, which is reflected in an infor-

mative prior πT0(p).

Model 2: Rational learning with small T0. In this case, the agent maintains significant

uncertainty about p by T0.

Model 3: Irrational beliefs. In this case, the agent believes in a wrong value for the

disaster probability, p1 6= p, and does not update his belief.

We set the sample size for the econometrician to T = 100 to mimic the sample

size of the U.S. annual consumption data. The risk aversion parameter is fixed at

γ = 4, and the leverage parameter is b = 3. The lower bound of log disaster size v is
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Figure 2: Unconstrained vs. constrained likelihood. The blue dash lines are the un-
constrained log likelihood functions; the red solid lines are the constrained log likelihood
functions. The horizonal lines on the log likelihood functions mark the 95% confidence
regions for p, while the vertical line marks the true values. In Panels A and B, the agent has
observed 4000 years of extra data by T0. In Panels C and D, the agent has only observed 10
years of extra data by T0. In Panel E and F, the agent has irrational beliefs p1 6= p0.

7%, and we set zt = 1 in years when consumption growth is lower than −7%. The

remaining parameters are calibrated to the aggregate consumption and market return

data: µ = 1.87%, σ = 1.95%, η = 5.89%, τ = 19.1%, ρ = 59.4%, ν = 34.9%. For

illustration, we consider two values of disaster probability p, 1% and 20%, and solve

for the disaster size parameter λ to make the model-implied equity premium in (2.2)

equal to the sample mean of 5.89%. The resulting values are λ = 4.82 and 63.06.

In Figure 2, we plot the log likelihood function of p in the unconstrained model and

the constrained RE model for a particular set of simulated data that is representative.

The three rows correspond to Model 1 through Model 3 listed above, and the two

columns correspond to p0 = 1% and p0 = 20%.
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The first thing to notice is that, under the same true disaster probability p0, the

unconstrained likelihood functions are identical (except for a level difference) across

the three models of beliefs. The 95% confidence intervals for p are marked by the

horizontal dash lines. In the cases where p0 = 1%, the 95% confidence interval spans

from 0.3% to 6.1%. When p0 = 20%, the confidence interval spans from 13.8% to

29.7%. Thus, while the confidence intervals indeed cover the true values, there is

significant uncertainty remaining for the econometrician when she estimates p using

the unconstrained model.

When the true value p0 is small, the constrained likelihood function is much more

concentrated than the unconstrained likelihood function. In contrast, when p0 is

large, the constrained likelihood function is only slightly more concentrated than the

unconstrained likelihood function. The ratio of asymptotic variances in (10) explains

this result. When p0 is small, the model requires a large average disaster size (small λ)

to match the observed equity premium, which makes η highly sensitive to changes in

p. As p0 increases, the average disaster size becomes smaller, and so does η̇(p). Based

on our calibration, % = 20.7 when p = p0 = 1%, and % = 2.0 when p = p0 = 20%.

While the cross-equation restriction appears to provide substantial information

about p in all three models of beliefs when p0 is small, the added information is not

always valid. In Model 1 (Panels A and B), the agent’s prior at time T0 is highly

concentrated at the true value of p due to learning from a long history of data. Thus,

returns generated by the model with learning are very close to those generated by

the RE model. As a result, the cross-equation restriction from the RE model is

approximately valid. This is reflected in the fact that the 95% confidence interval

based on the constrained model covers the true value of p. The fact that the confidence

interval is significantly tighter for small p0 in Panel A shows that, under the condition

that the RE model is a good approximation of the true model, having a fragile model

(in the sense that asset pricing moments are very sensitive to small changes in the

parameters) is helpful for inference.

Next, in Model 2 (Panels C and D), the agent faces significant uncertainty about
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p at T0. His posterior beliefs about p change significantly with the arrival of new

observations, which are reflected in the observed series of asset returns. For this

reason, the RE assumption is not a good approximation to the true model. In this

case, imposing the cross-equation restriction in a fragile model (when p0 is small) gives

the econometrician false confidence in her estimate of p, which may be far away from

the true value. Finally, in Model 3 (Panels E and F), the agent irrationally believes

in a wrong value for disaster probability. In this case, the cross-equation restriction

from the RE model is invalid by construction. When p0 is small, the 95% confidence

interval for the constrained model is again misleadingly tight and fails to cover the

true parameter value.

The RE model is misspecified relative to each of the three models of beliefs.

However, the misspecification may be difficult to detect with limited data. To quantify

the ability of an econometrician to detect model misspecification, we simulate multiple

samples of data (with sample size of 100) based on each model of beliefs, run the

likelihood ratio (LR) tests of the RE restrictions, and report the rejection ratio — the

fraction of the LR tests that reject the RE assumption. To perform the LR test, we

specify the RE model as a special case of a general class of models. Consider the

following model of returns that nests the model with rational learning, the model with

irrational beliefs, and the model with RE,

ηt = γρστ − τ 2

2
+ eγµ−

γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2
ν2 e(γ−b)v

λ+ b− γ

)
ω

1− ω
+ h

Eat [p]
1− Eat [p]

. (11)

One way to conduct the test is to ignore learning (setting h = 0 in (11)) and only

test whether the representative agent’s belief is anchored to the true parameter value.

In this case, the RE model restriction we are testing is ω = p. Alternatively, we can

conduct the LR test with learning. The RE model restriction in this case is ω = p

and h = 0. Due to the small sample size, we compute the small-sample critical values

for the LR tests using simulation.

The results are reported in Table 1. For Model 1 where the agent has a lot of
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Table 1: Rejection rates of likelihood ratio tests on the rational expectation restriction.

Without Learning With Learning

Model 1 Model 2 Model 3 Model 1 Model 2 Model 3

p0 = 1% 0.046 0.015 0.322 0.048 0.473 0.101
p0 = 20% 0.049 0.021 0.098 0.049 0.073 0.082

knowledge about the true value of p0, the rejection rate is low regardless of whether

we take learning into account or not. This is consistent with the observation that the

RE assumption is a good approximation for a model with learning when agents have

learned a great deal about the unknown parameter from the long series of prior data.

For Model 2, the rejection rate is still low when p0 = 20%. This is because the risk

premium ηt is insensitive to changes in the agent’s posterior belief about p. When

p0 = 1%, the likelihood ratio test becomes significantly more powerful when we take

learning into account. However, even in that case, we get a rejection rate of less than

50%. Similarly, for Model 3 where the agent has irrational beliefs, it is difficult to

reject the RE model based on the likelihood ratio test.

The example above illustrates the problems with RE models that we would like to

emphasize. Ideally, the RE model should be a good approximation to Model 1 but

not to Models 2 and 3. However, with limited data, it is difficult to distinguish the

three settings, and thus, even when the RE assumption is a poor approximation to the

data generating process, it may still be difficult to reject it using standard statistical

tests. The informativeness of the cross-equation restrictions can be used to guard

against two types of problems. For an econometrician, the danger of imposing RE

when the cross-equation restrictions appear highly informative (which in our example

corresponds to the cases when p0 is small) is that we can draw wrong inferences

about the true parameter value. For a model builder, the danger is that the precise

beliefs imposed on the agents inside the RE model may not be anchored to the true

probability distributions, but rather picked essentially arbitrarily to fit the data. The
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lack of understanding of how such beliefs come about not only means the model is

incomplete as an explanation of the data, but also makes it problematic to apply the

model elsewhere, for instance, for welfare analysis, which could also be sensitive to

parameter values.

3 Information Measures

Our measures of the informativeness of the cross-equation restrictions aim to quantify

the degree of precision the econometrician can gain in estimating the parameters with

and without imposing the cross-equation restrictions. We define the measures formally

in this section.

Let xn = (x1, · · · ,xn) be the sample of variables observed by agents and the

econometrician. We denote the statistical model of xn as fP(xn; θ, φ), or simply Pθ,φ.

The subject of interest is a subset of parameters θ ∈ Rd from the statistical model

that governs the dynamics of xt. In particular, θ might include parameters that

resemble “dark matter”, i.e., parameters that are difficult to estimate directly but

have large effects on model performance. The other parameters in the model (the

nuisance parameters) are in the vector φ.

In a rational expectations model, we assume that the agents know the true

parameter values and that the equilibrium decision rules and prices are based on

such knowledge. Thus, the economic model can generate additional restrictions on

the dynamics of xt, which will aid the estimation of θ. Moreover, after imposing

the economic restrictions, there could be additional data yn = (y1, · · · ,yn) that

become informative about θ.8 We denote the economic model for the joint distribution

of (xn,yn) as fQ(xn,yn; θ, φ), or simply Qθ,φ, where all the nuisance parameters

(including those from the statistical model) are again collected in φ.

We denote the true value for θ by θ0 and denote the true value for the nuisance

8The distinction between xn and yn is that all the available data that are informative about θ in
the absence of the cross-equation restrictions are included in xn, and yn is only informative about θ
when the cross-equation restrictions are imposed. The set of yn can be empty.
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parameter φ by φ0. Unless stated otherwise, we assume the true values of the nuisance

parameters are known, i.e., φ = φ0. For notational simplicity, we denote Qθ ≡ Qθ,φ0 ,

Pθ ≡ Pθ,φ0 , Q0 ≡ Qθ0,φ0 and P0 ≡ Pθ0,φ0 .

3.1 Asymptotic measure

The first measure of the information provided by the cross-equation restriction is

based on the comparison between the Fisher information for the parameters of interest

θ in the model with and without the cross-equation restrictions. Given a likelihood

function L(θ;φ0 |Data), the Fisher information for θ is defined as

I(θ) = −E
[
∂2 lnL(θ;φ0 |Data)

∂θ∂θT

]
. (12)

We denote the information matrix under the unrestricted model by IP(θ). Under the

model with cross-equation restrictions, the information matrix is IQ(θ).

Fisher information is naturally linked to the information one can obtain on param-

eters from the data. The asymptotic variance of the maximum likelihood estimator

(MLE) is given by the inverse of the Fisher information. The asymptotic variance for

the posterior is also given by the inverse of the Fisher information. In Section 3.3,

we discuss further the information-theoretic interpretations of the measure based on

Fisher information.

To compute the Fisher information requires the knowledge of the true value of the

parameters. We first define the asymptotic information ratio conditional on θ. Then,

we discuss how to compute the information ratio when the econometrician does not

know the true value of θ.

Definition 1. The asymptotic information ratio is defined as:

%a(θ) = max
v∈Rd,||v||=1

vT IQ(θ) v

vT IP(θ) v
. (13)

The idea behind this information measure is as follows. Through the vector v,
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we search over all possible directions in the parameter space to find the maximum

discrepancy between the two information matrices. In the context of maximum

likelihood estimation, the Fisher information is linked to the inverse of the asymptotic

variance of the estimator. Therefore, intuitively, the asymptotic information ratio is a

way to compare the asymptotic variances of the maximum likelihood estimators in the

model with and without cross-equation restrictions. The information ratio also has a

natural sample-size interpretation. Specifically, we ask what is the minimum sample

size required for the MLE of parameters of the unrestricted model to match or exceed

the precision of the MLE for the model with additional cross-equation restrictions in

all possible directions. Because the information matrix is proportional to the sample

size n, the unrestricted model requires a sample size %a times longer than the one used

by the model with cross-equation restrictions.

The asymptotic information ratio is easy to compute. It is given by the largest

eigenvalue of the matrix R−1IQ(θ)R−1, where R ≡ IP(θ)
1
2 . Let the corresponding

eigenvector be emax. Then the direction along which the asymptotic information ratio

is obtained is

vmax = R−1emax/||R−1emax||. (14)

The asymptotic information ratio defined in (13) is based on Fisher information,

which requires full knowledge of the likelihood function to compute. In the cases

where the likelihood function is unknown or too complex to compute, the Generalized

Method of Moments provides a general alternative, where a generalized information

matrix for GMM (see Hansen, 1982; Chamberlain, 1987; Hahn, Newey, and Smith,

2011) can be used in place of the Fisher information.9 Another benefit of using the

GMM is that it provides the flexibility of focusing on specific aspects of a model that

the modeler considers relevant (as indicated by the selected moment conditions) when

measuring the informativeness of the cross-equation restrictions.

9Under the GMM framework, we consider IGMM
M (θ) := GTM (θ)Ω−1

M (θ)GM (θ), where M = P or
Q, GM (θ) := EMθ

[
∂
∂θgM (x|θ)

]
, ΩM (θ) := EMθ

[
gM (x|θ)gTM (x|θ)

]
, and gM (x|θ) is a vector-valued

function. We can estimate IGMM
M (θ) using corresponding sample moments.

19



Sometimes a model can have a large number of parameters, and the econometrician

might be particularly interested in examining the information content for a subset of

θ. This is easy to do because the asymptotic information ratio is based on the Fisher

information matrix as opposed to its inverse. The following result shows that the

asymptotic information ratio based on a subset of parameters is always smaller than

based on the full set.

Proposition 1. For any non-empty subset of the model parameters denoted by θs ⊆ θ,

let %a(θs) be the asymptotic information ratio based on θs defined in (13). Then,

%a(θs) ≤ %a(θ).

Proof. Without loss of generality, we assume θs consists of the first ds elements of θ.

Let the i-th basis vector be ei ≡ (0, · · · , 1︸︷︷︸
i-th

, · · · , 0). Then, from (13) we have

%a(θs) = max
v∈Rd:||v||=1,v⊥eds+1,··· ,ed

vT IQ(θ)v

vT IP(θ)v
≤ max

v∈Rd:||v||=1

vT IQ(θ)v

vT IP(θ)v
= %a(θ).

�

The asymptotic information ratio can be used in various ways in practice. We can

compute %a for a model based on a specific set of calibrated parameter values. This

allows us to gauge informativeness of the cross-equation restrictions under a particular

calibration. Alternatively, we may want to study the fragility of a general class of

models. In that case, we recommend a two-step procedure. First, we can generate a

constrained posterior distribution (by imposing the cross-equation restrictions) of the

parameters θ. Second, based on the distribution for θ, we can compute the distribution

of %a(θ), which shows the informativeness of the cross-equation restrictions for this

general class of models.10

10In the latter case, the distribution of asymptotic information ratios depends on the sample
information because the posterior of θ depends on the sample. We can derive the asymptotic
large-sample distribution of the asymptotic information ratio using the delta method.
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3.2 Finite-sample measure

The asymptotic measure defined in the previous section does not fully exploit the

information provided by the cross-equation restrictions in a given sample. In finite

samples, imposing the cross-equation restrictions not only changes the variance of an

estimator of θ, but also many other aspects of its distribution. Such considerations

suggest that it might be desirable to compare the entire distribution of the estimators,

especially when the quality of the large-sample approximation is poor.

The Bayesian method is well-suited for this purpose. We first specify an “uninfor-

mative prior” about θ, π(θ). A truly uninformative prior is hard to define, especially in

the presence of constraints. We consider the Jeffreys priors of the unconstrained model

Pθ,φ. Besides the invariance property of the Jeffreys prior, it is uninformative in the

sense that, under general regularity conditions, it maximizes the mutual information

between the data and the parameters asymptotically (e.g., Polson, 1988; Clarke and

Barron, 1994), hence it serves as a reference prior. The reference prior, by definition,

makes the statistical inference maximally dependent on the data and the model,

while at the same time making the prior least informative about the parameters in a

certain information-theoretic sense. Intuitively, it represents an “objective prior” in

the sense of maximizing the information discrepancy between the prior and posterior

distributions of the parameters. See Bernardo (1979, 2005) and Berger, Bernardo, and

Sun (2009) for more discussion on the reference prior.

We use the uninformative prior to form the posterior distribution of θ in the

unconstrained model. We assume the same prior for the model with cross-equation

restrictions. The posterior density of θ in the unrestricted model is πP(θ|xn), which

denotes the dependence on the posterior on the data xn and the model Pθ. The posterior

density in the constrained model is πQ(θ|xn,yn), which denotes its dependence on the

data (xn,yn) and the cross-equation restrictions generated by the model Qθ.

The relative entropy (also known as the Kullback-Leibler divergence) is a standard

measure of the statistical discrepancy between two probability distributions. The
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relative entropy between πP(θ|xn) and πQ(θ|xn,yn) is

DKL(πQ(θ|xn,yn)||πP(θ|xn)) =

∫
ln

(
πQ(θ|xn,yn)

πP(θ|xn)

)
πQ(θ|xn,yn)dθ . (15)

Intuitively, we can think of the log posterior ratio ln(πQ(θ|xn,yn)/πP(θ|xn)) as a

measure of the discrepancy between the two posteriors at a given θ. Then the

relative entropy is the average discrepancy between the two posteriors over all possible

θ, where the average is computed under the constrained posterior. According to

the definition of relative entropy (see e.g., Cover and Thomas, 1991), the relative

entropy DKL(πQ(θ|xn,yn)||πP(θ|xn)) is finite if and only if the support of the posterior

πQ(θ|xn,yn) is a subset of the support of the posterior πP(θ|xn), that is, Assumption

PQ in Appendix A.1 holds. Otherwise, the relative entropy is infinite.

The relative entropy is difficult to interpret directly. We will define an entropy-based

information ratio that has a similar “sample size” interpretation as the asymptotic

information ratio. The idea is that instead of imposing the cross-equation restrictions,

we could have gained more information about θ from extra data. Our finite-sample

information ratio shows how much extra data is needed if we want to gain the same

amount of information from the extra data, according to the relative entropy measure,

as we do from imposing the cross-equation restrictions.

Let the additional data x̃m be of sample size m, which we assume is randomly

drawn from the posterior predictive distribution

πP(x̃m|xn) :=

∫
πP(x̃m|θ)πP(θ|xn)dθ, (16)

where πP(x̃m|θ) is the likelihood function of the unconstrained model and πP(θ|xn)

is the unconstrained posterior density given historical data xn. Then, the gain in

information from extra data is

DKL(πP(θ|x̃m,xn)||πP(θ|xn)) =

∫
ln

(
πP(θ|x̃m,xn)

πP(θ|xn)

)
πP(θ|x̃m,xn)dθ . (17)
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The relative entropy DKL(πP(θ|x̃m,xn)||πP(θ|xn)) depends on the realization of the

additional sample of data x̃m. We want to find m∗ such that the amount of information

provided by the extra data is, on average, equal to the amount of information provided

by the cross-equation restrictions. The average relative entropy (information gain) over

possible future sample paths {x̃m} according to the posterior predictive distribution

πP(x̃m|xn) is in fact the mutual information between x̃m and θ given xn:

I(x̃m; θ|xn) ≡ E(x̃m|xn) [DKL(πP(θ′|x̃m,xn)||πP(θ′|xn))]

=

∫ ∫
DKL(πP(θ′|x̃m,xn)||πP(θ′|xn))πP(x̃m|θ)πP(θ|xn)dx̃mdθ

=

∫
Ex̃m

Pθ [DKL(πP(θ′|x̃m,xn)||πP(θ′|xn))]πP(θ|xn)dθ. (18)

Like the relative entropy, the mutual information is always positive. It is easy to check

that I(x̃m; θ|xn) = 0 when m = 0. Under the assumption that the prior distribution

is nonsingular and the parameters in the likelihood function are well identified, and

additional general regularity conditions, I(x̃m; θ|xn) is monotonically increasing in

m and converges to infinity as m increases. These properties ensure that we can

find an extra sample size m that equates (approximately, due to the fact that m

is an integer) DKL(πQ(θ|xn,yn)||πP(θ|xn)) with I(x̃m; θ|xn). Thus, we define the

finite-sample information measure as follows.

Definition 2. The finite-sample information ratio is defined as

%KL(θ|xn,yn) =
n+m∗

n
, (19)

where m∗ satisfies

I(x̃m∗ ; θ|xn) ≤ DKL(πQ(θ|xn,yn)||πP(θ|xn)) ≤ I(x̃m∗+1; θ|xn), (20)

with DKL(πQ(θ|xn,yn)||πP(θ|xn)), I(x̃m; θ|xn) defined by (15) and (18), respectively.

Unlike the asymptotic measure which focuses on the direction in the parameter
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space with the largest information discrepancy between the constrained and uncon-

strained model, the finite sample measure compares the overall discrepancy (based

on the relative entropy) between the posterior distributions in the constrained and

unconstrained model. One can also construct a finite-sample measure that emphasizes

a particular direction in the parameter space using feature functions. Definition 3

defines the finite sample information ratio with respect to a feature function. Later,

Theorem 3 establishes the asymptotic equivalence between the asymptotic measure

and the finite sample measure with respect to an appropriate feature function.

Definition 3. Suppose Assumption PQ and FF in Appendix A.1 hold. The finite-

sample information ratio for θ with respect to a feature function f is defined as

%fKL (θ|xn,yn) =
n+m∗f
n

, (21)

where m∗f satisfies

I(x̃m∗f ; f(θ)|xn) ≤ DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn)) ≤ I(x̃m∗f +1; f(θ)|xn), (22)

with DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn)) being the relative entropy between the con-

strained and unconstrained posteriors of f(θ) and I(x̃m; f(θ)|xn) being the conditional

mutual information between the additional sample of data xm and the transformed

parameter f(θ) given the existing sample of data xn.

What feature function should we use in practice? It is possible to search within

a particular parametric family (e.g., linear functions) for the feature function that

generates the largest information discrepancy.11 However, doing so may cause f(θ) to

excessively emphasize aspects of the model that are of little economic significance. A

model builder likely has a better idea about which aspects of the model implications

11Another objective method to identify the “worst-case” feature function is to consider the maximum
mean discrepancy (MMD) between the constrained and unconstrained posteriors of θ. The MMD and
its approximations are studied by Gretton, Borgwardt, Rasch, Schölkopf, and Smola (2012) based on
the theory of reproducing kernel Hilbert spaces (RKHS). An efficient approximation method for f∗

as well as an algorithm can be found in Gretton, Borgwardt, Rasch, Schölkopf, and Smola (2012).
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are the most relevant, which parameters or parameter configurations are key to the

model’s performance, and which parameters are difficult to measure from the data.

Such knowledge guides one to find the feature function that can more effectively locate

the potential “dark matter” inside a model. One example is a feature function that

maps the entire set of parameters θ into the subset of those “dart matter” parameters.

We provide such an example in the disaster risk model studied in Section 4.

Computing the finite-sample information ratio can be numerically challenging.

Next, we present two useful approximation results, one for the relative entropy between

the two posteriors πP(f(θ)|xn) and πQ(f(θ)|xn,yn), one for the mutual information

I(x̃m; θ|xn). The basic idea is that in some cases we can approximate the posterior

with a normal density, which gives an analytical expression for the relative entropy.

Theorem 1 (Relative Entropy). Define v ≡ ∇f(θ0). Let the MLE from the uncon-

strained model Pθ be θ̂P, and the MLE from the constrained model Qθ be θ̂Q. Under

the regularity conditions stated in Appendix A.1, we have

DKL(πQ(f(θ)|xn,yn)||πP(f(θ)|xn))− n

2v′IQ(θ0)−1v
(f(θ̂P)− f(θ̂Q))2

→ 1

2
ln

vT IP(θ0)−1v

vT IQ(θ0)−1v
+

1

2

vT IQ(θ0)−1v

vT IP(θ0)−1v
− 1/2 in Q0. (23)

Proof. A heuristic proof is in Appendix A. A complete proof is in the Internet

Appendix. �

The following approximation has been studied extensively for mutual information:12

I(x̃m; θ|xn) =
d

2
ln

m

2πe
+

1

2

∫
πP(θ|xn) ln |IP(θ)|dθ +

∫
πP(θ|xn) ln

1

πP(θ|xn)
dθ + op(1).

(24)

To apply the approximation (23) for the relative entropy, we need the sample size n

12For more details see Clarke and Barron (1990, 1994) and references therein. See also the
early development by Ibragimov and Hasminskii (1973) and Efrŏımovich (1980), and the case of
non-identically distributed observations by Polson (1992), among others.
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to be large. To apply the approximation (24) for the mutual information, we need

the sample size m of additional data to be large. However, the approximation (24)

is valid only when the observed sample size n is fixed. The following asymptotic

approximation is valid for the case where n goes to infinity.

Theorem 2 (Mutual Information). Under the assumptions in Subsection A.1, if m

approaches to infinity as n goes to infinity and m/n→ ς ∈ (0,∞), it holds that

I(x̃m; f(θ)|xn)− 1

2
ln

(
m+ n

n

)
→ 0 in Q0.

Proof. A heuristic proof is in Appendix A. A complete proof is in the Internet

Appendix. �

Finally, the following theorem shows that the asymptotic information ratio %a and

the finite sample information ratio %fKL(θ|xn,yn) are asymptotically equivalent under

a certain feature function.

Theorem 3 (Asymptotic Equivalence). Consider the feature function f̂ such that

∇f̂(θ0) = vmax, where vmax, given by (14), is the direction along which the asymptotic

information ratio %a is obtained. Under the regularity conditions stated in Appendix A.1,

it must hold that

ln %f̂KL(θ|xn,yn)
D−→ ln %a + (1− %−1

a )(χ2
1 − 1),

where χ2
1 is a chi-square random variable with degrees of freedom 1.

Proof. A heuristic proof is in Appendix A. A complete proof is in the Internet

Appendix. �

3.3 Information-theoretic interpretation for %a and %KL

In this section, we discuss the theoretical foundation of our measures for the informa-

tiveness of cross-equation restrictions.
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The relative entropy is a widely used measure of the difference between two

distributions. When P2 is a conditional distribution of P1 based on extra information,

e.g., some constraints or data, DKL(P2||P1) is a measure of the information gain. Next,

the conditional mutual information I(x̃m; θ|xn) is an information-theoretic measure

quantifying the average amount of extra information about θ embedded in the extra

data x̃m relative to the information about θ already in xn. Thus, the finite-sample

information ratio %KL matches the information gain from the cross-equation restrictions

with the average information gain from extra data. A similar idea is adopted by Lin,

Pittman, and Clarke (2007) in studying effective sample and sample size to match a

certain amount of information.

The Fisher information is a statistical measure to answer the question “How

hard is it to estimate distributions.” For example, the Cramer-Rao lower bound is

characterized by the Fisher information. But what does it mean to compare the

Fisher information from two models? We answer this question using the Chernoff

information. The Chernoff information gives the asymptotic geometric rate at which

the detection error probability (the weighted average of the mistake probabilities in

model selection based on some prior probabilities of the two models) decays as the

sample size increases. Hansen (2007) refers to it as the Chernoff rate. Intuitively, it

measures “How hard is model detection based on the data.” We will show that the

asymptotic information ratio is the ratio of two Chernoff rates, one computed without

imposing the cross-equation restrictions, one with. Thus, the asymptotic measure

quantifies the informativeness of the cross-equation restrictions by asking how much

they increase our ability to distinguish alternative models.

Consider a model with density p(x|θ0, φ0) and an alternative model with density

p(x|θv, φ0). Assume the densities are absolutely continuous to each other. The Chernoff

information between the two models is defined as (see, e.g., Cover and Thomas (1991)):

C∗(p(x|θv, φ0) : p(x|θ0, φ0)) := − ln min
α∈[0,1]

∫
X

p(x|θ0, φ0)αp(x|θv, φ0)1−αdx. (25)
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We discuss the Chernoff information further in Appendix B.2. Under a set of mild

sufficient conditions which are trivially implied by the regularity conditions stated in

Appendix A.1, we derive the following relationship between the asymptotic measure

and the Chernoff information.

Proposition 2. Consider the product probability measures p(x1, · · · , xn|θ, φ0) :=

Πn
i=1p(xi|θ, φ0) and q(x1, · · · , xn|θ, φ0) := Πn

i=1q(xi|θ, φ0) with θ ∈ Θ. Assume Θ is

compact and θ0 ∈ Int(Θ), and that the densities are absolutely continuous to each other.

Suppose the density function p(x|θ, φ0) and q(x|θ, φ0) are continuously differentiable in

θ for almost every x under p(x|θ0, φ0). We assume that the Chi-square discrepancies

Dχ2(p(x|θ0, φ0), p(x|θ, φ0)) = O(||θ − θ0||) and Dχ2(q(x|θ0, φ0), q(x|θ, φ0)) = O(||θ −

θ0||), when θ → θ0. If the elements of the Fisher Information matrixes IP(θ) and IQ(θ)

are well defined and continuous in θ, then

%a(θ) = lim
n→∞

max
v∈Rd,||v||=1

C∗(q(x1, · · · , xn|θv, φ0) : q(x1, · · · , xn|θ, φ0))

C∗(p(x1, · · · , xn|θv, φ0) : p(x1, · · · , xn|θ, φ0))
,

where θv = θ0 + n−
1
2hv with ||v|| = 1, h ∈ R+, and n is the sample size.

Proof. See Appendix B.1. �

The cross-equation restrictions increase the efficiency of parameter estimation,

which makes it is easier to distinguish a model q(x1, · · · , xn|θ, φ0) from those in its

neighborhood, q(x1, · · · , xn|θv, φ0). This is reflected in a larger Chernoff rate within

the class of the constrained models. The ratio between the two Chernoff rates is the

largest in the direction vmax, meaning that the cross-equation restrictions are the

most helpful in distinguishing between models along the vmax direction.

Finally, because the Chernoff rate is proportional to sample size, in order to match

or exceed the detection error probabilities for the constrained model in all directions,

one must increase the sample size for the unconstrained model by a factor of %a.
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4 Disaster Risk Model Revisited

In this section, we apply our information measures to the rare disaster model introduced

in Section 2. Rare economic disasters are a good example of “dark matter” in asset

pricing. Statistically, one cannot rule out the existence of rare events even if they have

never occurred in a limited sample of macroeconomic data. Yet, disasters can have

significant impact on asset prices if they are sufficiently large in size.13

We consider the model under the rational expectations assumption. The expected

excess log return in a non-disaster state is given in (2.2), which is restated below:

η ≈ γρστ − τ 2

2
+ eγµ−

γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2
ν2 e(γ−b)v

λ+ b− γ

)
p

1− p
.

The fact that the risk premium η explodes as λ approaches γ is a crucial feature

for our analysis. On the one hand, it shows that no matter how rare the disaster is, we

can generate an arbitrarily large risk premium η by making the average disaster size

sufficiently large (λ sufficiently small). As we will show later, these “extra rare and

large” disasters are particularly difficult to rule out based on standard statistical tests.

On the other hand, as the risk premium explodes, it becomes extremely sensitive to

small changes in λ (its first derivative with respect to λ also explodes). This feature

implies that the value of λ has to be picked “exactly right” in order to generate a risk

premium consistent with the data, which makes the models based on “extra rare and

large” disasters particularly fragile according to our information criteria.

Equation (2.2) provides the cross-equation restriction between the process of

consumption growth gt, the disaster state zt, and the excess log return of the market

portfolio rt. Next, we discuss how to measure the informativeness of this restriction

based on the asymptotic and finite-sample information ratios.

13See the early work by Rietz (1988), and recent developments by Barro (2006), Longstaff and
Piazzesi (2004), Gabaix (2012), Gourio (2012), and Martin (2012), among others.
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4.1 Information ratios

We first compute the asymptotic information ratio. Since the parameters that are the

most difficult to estimate directly from the data are the probability of disasters p and

the disaster size parameter λ, it is natural to focus on the informativeness of the asset

pricing constraint about these two parameters. Hence, we take θ = (p, λ) to be the

parameters of interest and treat φ = (µ, σ, η, τ, ρ, ν) as the nuisance parameters. In

this model, the asymptotic information ratio on θ can be computed analytically.

Proposition 3. The asymptotic information ratio for (p, λ) is

%a(p, λ) = 1 +
p∆ (λ)2 + p (1− p)λ2∆̇ (λ)2

(1− ρ2) τ 2 (1− p)2 e2γµ−γ2σ2

, (26)

where

∆(λ) := λ

(
eγv

λ− γ
− e(γ−b)v

λ− γ + b
eν

2/2

)
,

and its derivative

∆̇(λ) = − eγvγ

(λ− γ)2 +
e(γ−b)v(γ − b)
(λ− γ + b)2

eν
2/2.

The asymptotic information ratio is obtained along the direction

vmax =

√p (1− p),
λ2
√

1−p
p

∆̇ (λ)

∆(λ)

T

.

Proof. See Appendix C.1. �

Through (3) we can see that the direction in which the asset pricing constraint is

the most informative depends on the frequency and size of disasters. If the disasters

are large and extremely rare, that is, p is small and λ is close to γ, then ∆̇(λ) is large

relative to ∆(λ), and the extra information provided by the asset pricing constraint

will be almost entirely on the disaster size parameter λ. If the jumps in consumption

are small and relatively frequent, that is, both p and λ are large, then the asset pricing

constraint can become more informative about p. The direction in which asset prices
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Table 2: Independent Jeffreys/Reference priors for parameters

Parameters Prior PDF (up to a constant)

p p−1/2(1− p)−1/2

λ λ−11(λ>0)

µ 1(−∞<µ<+∞)

σ σ−21(σ>0)

η 1(−∞<η<+∞)

τ τ−21(τ>0)

ρ (1− ρ2)−11(−1<ρ<1)

ν ν−21(ν>0)

provide no extra information is

vmin =

(√
p (1− p),− ∆(λ)√

p (1− p)∆̇ (λ)

)T

.

Next, we construct the Bayesian information ratio based on the unconstrained and

constrained posteriors of the parameters θ = (p, λ) in a finite sample. We appeal to

the Jeffreys prior of the model without asset pricing constraint as the econometrician’s

prior. Given the likelihood function in (39), the parameters are mutually independent

under the Jeffreys prior and their probability density functions (PDFs) are explicitly

specified in Table 2. Note that the prior π(σ2)π(τ 2)π(ρ) is in fact the Jeffreys prior

for Σ, that is,

π(Σ) ∝ |Σ|−(d+1)/2 with d = 2.

The posterior distribution of θ and the nuisance parameters φ are given in equations

(47) and (48) in Appendix C.2.2. The unconstrained posterior has an explicit analytical

expression because Jeffreys priors are conjugate for the unconstrained model.

The constrained likelihood function (given by equation (40)) is “nonstandard”

when we impose equality and inequality constraints on the parameters. Given the

independent reference priors specified in Table 2 and the “nonstandard” likelihood

function, not only the analytical form of the posterior density function becomes
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inaccessible, but also the traditional Monte Carlo methods designed to draw i.i.d.

samples from the posterior become inefficient. For simulations based on a “nonstan-

dard” likelihood function, one of the general methods is the Approximate Bayesian

Computation (ABC).14 One issue with applying the conventional ABC method to our

disaster risk model is the lack of efficiency when the priors are flat. Given the specific

structure of our problem, we propose a tilted ABC method to boost the speed of our

simulation. The details of the procedure are in Appendix C.2.2.

We calculate %KL(θ) based on the relative entropy between unconstrained posterior

πP(θ|gn, zn) and constrained posteriors πQ(θ|gn, zn, rn), respectively. To map into the

notation of Section 3, we have xn = {gn, zn} and yn = {rn}. In general, the analytical

form of the relative entropy is not available. Utilizing a large amount of simulated

data from the two distributions, we estimate the relative entropy accurately using the

K-Nearest-Neighbor (KNN) method (see e.g., Wang, Kulkarni, and Verdú, 2009). In

addition, the average relative entropy between πP(θ|gn, zn) and πP(θ|gn, zn, g̃m, z̃m),

that is the mutual information I(g̃m, z̃m; θ|gn, zn), has a nearly analytical formula,

which we derive in Appendix C.2.1. Using these results, we compute the finite-sample

information ratio %KL(θ) based on (19).

4.2 Quantitative analysis

We now use the information ratios to study the robustness of the class of disaster

risk models introduced above. We use annual real per-capita consumption growth

(nondurables and services) from the NIPA and annual excess log returns of the market

portfolio from CRSP for the period of 1929 to 2011.

To illustrate the fragility of the model, we plot in Figure 3 the 95% and 99%

confidence regions for (p, λ) based on the unconstrained likelihood function (39).

The maximum likelihood estimates are (p̂MLE, λ̂MLE) = (0.0122, 78.7922), which is

represented by the dot in the middle of the confidence regions. As the graph shows,

14For general introduction to the ABC method, see Blum (2010) and Fearnhead and Prangle
(2012), among others.
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Figure 3: The 95% and 99% confidence regions of (p, λ) for the unconstrained model and
the equity premium isoquants implied by the asset pricing constraint for γ = 3, 10, 24.

the likelihood function is very flat along the direction of λ when disaster probability

p is small. This feature is particularly relevant. It means that with p sufficiently

small, we cannot reject models with extremely severe disasters (small λ) using the

consumption data alone. Based on this criterion, we refer to a calibration with the

pair of (p, λ) that is within the 95% confidence region as an “acceptable calibration”.15

In Figure 3, we also plot the equity premium isoquants for different levels of relative

risk aversion: lines with the combinations of p and λ required to match the average

equity premium of 5.89% for a given γ. The fact that these lines all cross the 95%

confidence region demonstrates that even for very low risk aversion (say γ = 3), there

exist many combinations of p and λ that not only match the observed equity premium,

but also are “consistent with the macro data” (they are “acceptable”).

While it is difficult to distinguish among these calibrations using standard statistical

tools, we can use the asymptotic information ratio to determine the informativeness

15Julliard and Ghosh (2012) estimate the consumption Euler equation using the empirical likelihood
method and show that the model requires a high level of relative risk aversion to match the equity
premium. Their empirical likelihood criterion rules out any large disasters that have not occurred in
the sample, hence requiring the model to generate high equity premium using moderate disasters.

33



1 2 3 4

·10−3

1

2

3

4

5 vmax

vmin

p

λ

C. γ = 3, p = 0.27%, λ = 3.14

4 4.5

·10−2

5

5.5

6
vmax

vmin

p

λ

A. γ = 3, p = 4.22%, λ = 5.46

2.4 2.6 2.8 3 3.2 3.4

·10−2

350

400

450

vmax

vmin

p

λ

B. γ = 24, p = 2.9%, λ = 396.7

2 3 4 5

·10−4

20

30

vmin

vmax

p

λ

D. γ = 24, p = 0.037%, λ = 25.49

Figure 4: The 95% confidence regions for the asymptotic distributions of the MLEs
for four “acceptable calibrations.” In Panels A through D, the asymptotic information
ratios are ρa(µ, σ

2) = 24.47, 1.81, 3.7× 104, and 2.9× 104.

of the asset pricing constraint under different model calibrations, which in turn can

help us gauge the robustness of the calibrated models. In particular, we focus on four

different calibrations, as denoted by the four points located at the intersections of

the equity premium isoquants (γ = 3, 24) and the boundary of the 95% confidence

region (see Figure 3). For γ = 3, the two points are (p = 4.22%, λ = 5.46) and

(p = 0.27%, λ = 3.14). For γ = 24, the two points are (p = 2.9%, λ = 396.7) and

(p = 0.037%, λ = 25.49). As in the interest rate model, we use the MLE confidence

region plots to illustrate the asymptotic information ratio in each of the four cases.

The results are presented in Figure 4.

The asymptotic information ratio not only varies greatly across calibrations with

different levels of relative risk aversion γ, but also across calibrations with the same γ.
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Figure 5: Distribution of asymptotic information ratios %a(p, λ) for different levels
of relative risk aversion. For each γ, the boxplot shows the 1, 25, 50, 75, and 99-th
percentile of the distribution of %a(θ) based on the constrained posterior for θ, πQ(θ; γ).

For example, in Panel A, the average disaster size is 25.32% and the annual disaster

probability is 4.2%. In this case, %a(p, λ) = 24.47, suggesting that we need 23.47 times

extra consumption data to be able to reach the same precision in the estimation of

p, λ as we do with the help of the equity premium constraint. If we raise γ from 3 to

24 while changing the annual disaster probability to 2.9% and lowering the average

disaster size to 7.25%, the asymptotic information ratio drops to %a(p, λ) = 1.81. The

reason is that by raising the risk aversion, we are able to reduce the average disaster

size, which has a dominating effect on the information ratio. Finally, Panels C and

D of Figure 4 are for the calibration of “extra rare and large disasters.” The impact

on the asymptotic information ratio is dramatic. For γ = 3 and 24, %a(p, λ) rises to

3.7× 104 and 2.9× 104, respectively.

So far, we have been examining the robustness of a specific calibrated model using

the asymptotic information ratio. We can also assess the robustness of a general class

of models instead of a particular calibration by plotting the distribution of %a(θ) based

on some “reasonable” distribution of θ. One candidate distribution is the constrained

posterior distribution πQ(θ|gn, zn, rn), which is discussed in Section 4.1 as part of the
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Figure 6: Unconstrained and constrained posterior 95% Bayesian confidence regions
for (p, λ). In the left panel, the constrained posterior sets γ = 3. In the right panel,
the constrained posterior sets γ = 24.

construction of the finite-sample information ratio. Since the constrained posterior

updates the prior π(θ) based on information from the data and the asset pricing

constraint, it can be viewed as our “best knowledge” of the distribution of θ assuming

the model constraint is valid.

We implement this idea in Figure 5. For each given γ, the boxplot shows the

1, 25, 50, 75, and 99-th percentile of the distribution of %a(θ) based on πQ(θ; γ|gn, zn, rn).

The asymptotic information ratios are higher when the levels of risk aversion are low.

For example, for γ = 3, the 25, 50, and 75-th percentile of the distribution of %a(p, λ)

are 21.9, 62.4, and 228.0, respectively. This is because a small value of γ forces the

constrained posterior for θ to place more weight on “extra rare and large” disasters,

which imposes particularly strong restrictions on the parameters (p, λ). As γ rises,

the constrained posterior starts to shift its mass towards smaller disasters, which

imply lower information ratios. For γ = 24, the 25, 50, and 75-th percentile of the

distribution of %a(p, λ) drop to 1.8, 2.6, and 5.4, respectively.

Next, we study the finite-sample information ratio %KL for the disaster risk model.

Since the definition of %KL(θ) is based on a comparison between the unconstrained

posterior distribution πP(θ|gn, zn) and the constrained posterior πQ(θ|gn, zn, rn), in
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Figure 6 we illustrate their differences by plotting the 95% Bayesian confidence

regions for (p, λ) according to the two posteriors. The 95% Bayesian region for the

unconstrained posterior distribution is similar to the 95% confidence region for (p, λ)

for the unconstrained model (see Figure 3).

The shape of the 95% Bayesian region for the constrained posterior depends on the

coefficient of relative risk aversion γ. When γ is high (e.g, γ = 24), the constrained

posterior is largely similar to the unconstrained posterior (see Panel B), except that it

assigns lower weight to the lower right region, because these relatively frequent and

large disasters are inconsistent with the equity premium constraint. For a lower level

of risk aversion, γ = 3, the constrained posterior is drastically different. The only

parameter configurations consistent with the equity premium constraint are those

with large average disaster size, with λ close to its lower limit γ.

After computing the relative entropy via the K-Nearest-Neighbor method, we solve

for m∗ that satisfies

DKL(πQ(θ; γ|gn, zn, rn)||πP(θ|gn, zn)) = I(g̃m∗ , z̃m∗ ; θ|gn, zn).

This procedure is illustrated in Figure 9 in Appendix C.2. The two horizontal lines

mark the relative entropy between the unconstrained and constrained posteriors for

(p, λ) for γ equal to 3 and 24. Consistent with Figure 6, the relative entropy is larger

for smaller γ. The line that is rising with extra sample size m is the conditional

mutual information between the extra data and the parameters, which is independent

of γ. The intersections of the conditional mutual information curve with the relative

entropy lines correspond to the finite-sample information ratios.

Figure 7 plots the finite-sample information ratio %KL(p, λ) for a range of values

of γ. Like the boxplots of the asymptotic information ratio in Figure 5, %KL(p, λ)

provides an overall measure of the informativeness of the asset pricing constraint for

the disaster risk model. The finite-sample information ratio is again declining in γ,

with %KL(p, λ) = 85.4 for γ = 3 and %KL(p, λ) = 1.7 for γ = 24. Economically, an
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Figure 7: Finite sample information ratio %KL(p, λ) conditional on γ.

information ratio of 85.4 implies that it would take, on average, 85 times the amount

of available consumption data (close to 7, 000 years) to be able to gain the same

amount of extra information about model parameters as implied by the asset pricing

constraint in a disaster risk model with γ = 3.

4.3 Estimating γ jointly with other model parameters

In the analysis of the rare disaster model so far, we have computed information ratios

for p and λ conditional on specific values of the coefficient of relative risk aversion

γ. In this section, we treat γ as a part of the parameter vector to be estimated by

the econometrician. This corresponds to the case in which the econometrician has

imperfect knowledge of the risk aversion parameter and tries to assess the robustness

of a more general class of disaster risk models than before (when γ is fixed).

We consider two ways to set up the joint estimation of all model parameters,

including γ, in our Bayesian framework. One is to specify a prior on γ that allows for

a wide range of values. Alternatively, the econometrician might prefer models with

low levels of risk aversion. For example, Barro (2006) states that the usual view in the

finance literature is that γ is in the range of 2 to 5. Our finite-sample information ratio
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on [1, 5]. Panel B displays the results when the prior is uniform on [1,50].

can accommodate such preferences. Specifically, we adopt an independent uniform

prior for γ in addition to the Jeffreys priors for the other structural parameters as

reported in Table 2. For γ, we first adopt a relatively “uninformative prior”, which is

uniformly distributed between 1 and 50. Next, we impose an “informative prior” on γ

that is uniform between 1 and 5, which echoes the view that “a reasonable γ should

not exceed 5.” We then compute the finite-sample information ratio on θ = (p, λ).

The ABC method can be applied here as well (see Appendix C.2.2 for more details).

In the case of “uninformative prior” on γ, the joint estimation with γ dramatically

lowers the finite-sample information ratio on p and λ, with %KL(p, λ) = 1.27. In

contrast, in the case where the econometrician holds a relatively “informative prior”

that favors small values for γ, the finite-sample information ratio remains high, with

%KL(p, λ) = 15.9, which means that the econometrician needs about 1, 225 years of

macro data to match the information provided by asset prices.

To understand why the information ratio is so different under the two sets of

priors for γ, we plot the constrained posterior density for γ from the two cases in

Figure 8. In the case of “uninformative prior” (Panel A), the median value for γ in

the constrained posterior is 25.8, and the probability that γ is less than 10 is 3.9%.
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As we have learned earlier, when the information ratio is computed with fixed γ (see

e.g., Figure 7), we do not need large and rare disasters to match the observed equity

premium under the relatively high values for γ, which reduces the sensitivity of the

cross-equation restrictions, hence lowering the information ratio %KL(p, λ).

While %KL(p, λ) is small, there is significant change in the constrained posterior

on γ relative to the uniform prior (which is the same as the unconstrained posterior

in this case). This result suggests that asset prices are in fact quite informative, but a

major part of the information is on the preference parameter γ (including the level

of γ and how it is correlated with the other structural parameters) rather than on p

and λ. Indeed, the finite-sample information ratio %KL(p, λ, γ) = 8.57, which means

that the amount of information gained by the econometrician from the asset pricing

constraint is equivalent to that from 628 years of additional macro data.

The large information ratio on θ = (p, λ, γ) does not imply that this model is fragile.

Instead, this is an example in which there is good justification for the assumption that

agents know more than the econometrician. It is reasonable to assume that agents

know their own preference parameters, and asset prices reflect such information.

Next, with an informative prior on γ (Panel B of Figure 8), the constrained

posterior on γ is concentrated on low values of risk aversion. The median value for γ in

the constrained posterior is 3.60. As a result, the information ratio of %KL(p, λ) = 15.9

resembles those we have computed in Figure 7 conditional on low values of γ.16 In

this case, the finite-sample information ratio on θ = (p, λ, γ) is even larger, with

%KL(p, λ, γ) = 184.65.

Finally, Table 3 reports the Bayesian posterior confidence intervals for a subset

of individual parameters in the constrained and unconstrained model. As the table

shows, it is not obvious how would measure model fragility based on a simple compar-

ison between the constrained and unconstrained confidence intervals for individual

parameters. It is true that we see a sizable difference between the unconstrained and

16Notice that the information ratio %KL(p, λ) in the case of uncertain γ is not equal to the average
of the information ratios based on fixed γ’s, because the uncertainty about γ increases the difficulty
of inference on p and λ.
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Table 3: 95% Bayesian confidence intervals for individual parameters

Parameters Constrained Unconstrained

U[1, 50] U[1, 5]

γ [11.478, 42.772] [1.2364, 4.9398]
p [0.0010, 0.0505] [0.0053, 0.0803] [0.0013, 0.0554]
λ [19.320, 339.489] [1.860, 11.614] [1.991, 290.871]
µ [0.0152, 0.0231] [0.0150, 0.0227] [0.0169, 0.0231]
σ [0.0169, 0.0230] [0.0169, 0.0230] [0.0144, 0.0230]

constrained confidence intervals for the disaster size parameter λ in the case with

a Uniform [0, 5] prior on γ, but the confidence intervals of other parameters have

changed by various amounts. In contrast, our information ratio measure concisely

captures the notion of model fragility in the multivariate setting.

5 Conclusion

Under the rational expectations assumption, agents know the true probability distri-

bution inside a model. This assumption removes the need for specifying subjective

beliefs for the agents, which simplifies and disciplines model specification and analysis.

But how do we know when this assumption is acceptable and when it becomes more

tenuous? In this paper, we provide new measures to systematically quantify the

informational burden that a rational expectations model places on the agents.

Our methodology can be applied to rational expectations models in a wide range of

areas in economics. The information measures we propose can be used to detect model

fragility when model parameters are calibrated to specific values, as well as when

parameter values are determined through structural estimation. These measures can

also be used to evaluate the robustness of competing classes of models that attempt

to explain the same set of empirical phenomena.
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Appendix

A Heuristic Proof of Theorems

Recall that we define Qθ ≡ Qθ,φ0 , Pθ ≡ Pθ,φ0 , Q0 ≡ Qθ0,φ0 and P0 ≡ Pθ0,φ0 in the

beginning of Section 3.

A.1 The Regularity Conditions

Assumption P

Suppose the parameter set is F = Θ × Φ ⊂ Rd × Rd1 with Θ compact. The true

parameter θ0 is an interior point of Θ. The prior is absolutely continuous with respect

to the Lebesgue measure with Radon-Nykodim density πP(θ), is twice continuously

differentiable and is positive on Θ.17

Assumption F

Suppose (θ0, φ0) is an interior point of parameter set F. The densities fP(x|θ, φ0)

and fQ(x, y|θ, φ0) are twice continuously differentiable in parameter set, for almost

every x, y under Q0. The probability measure fP(x|θ, φ0) is the marginal distribution

of the joint probability measure fQ(x, y|θ, φ0). We denote πP(x|θ) = fP(x|θ, φ0) and

πQ(x|θ) = fQ(x|θ, φ0) by leaving out the nuisance parameter φ0. For each pair of j

and k, it holds that for some constant ζ > 0 and large constant C > 0, for all θ ∈ Θ,

EQθ sup
ϑ∈Θ

∣∣∣∣ ∂2

∂ϑj∂ϑk
lnπP(x|ϑ)

∣∣∣∣2+ζ

< C,

and

EQθ sup
ϑ∈Θ

∣∣∣∣ ∂2

∂ϑj∂ϑk
lnπQ(x|ϑ)

∣∣∣∣2+ζ

< C,

and

EQθ sup
ϑ∈Θ

∣∣∣∣ ∂∂ϑj ln πP(x|ϑ)

∣∣∣∣2 < C,

and

EQθ sup
ϑ∈Θ

∣∣∣∣ ∂∂ϑj lnπQ(x|ϑ)

∣∣∣∣2 < C.

17In our diaster risk model, the parameter set is not compact due to the adoption of uninformative
prior. However, in that numerical example, we can truncate the parameter set at very large values
which will not affect the main numerical results.
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Remark 4. There are two information matrices that typically coincide and have a

basic role in the analysis. For the model Pθ, these matrices are

IP(θ) ≡ EQθ

[
∂

∂ϑ
lnπP(x|ϑ)

∂

∂ϑT
ln πP(x|ϑ)

∣∣∣∣
ϑ=θ

]
,

and

JP(θ) ≡ −EQθ

[
∂2

∂ϑ∂ϑT
lnπP(x|ϑ)

∣∣∣∣
ϑ=θ

]
.

When the Assumption F holds, we have IP(θ) = JP(θ) (see e.g., Lehmann and

Casella, 1998). Similarly, the assumption guarantees that IQ(θ) = JQ(θ) which are

information matrices defined for the model Q correspondingly.

Assumption KL

The Kullback-Leibler distances DKL(Pθ||Pϑ) and DKL(Qθ||Qϑ) are twice continuously

differentiable on Θ×Θ with JP(θ) and JQ(θ) are positive definite.

Remark 5. In fact, it follows from Assumption F that DKL(Qθ||Qϑ) and DKL(Pθ||Pϑ)

are twice continuously differentiable in ϑ and

JP(θ) =
∂2

∂ϑ∂ϑT
DKL(Pθ||Pϑ) |ϑ=θ and JQ(θ) =

∂2

∂ϑ∂ϑT
DKL(Qθ||Qϑ) |ϑ=θ .

Assumption PO

For any open neighborhood N of θ0, there are constants ξ1 > 0 and ξ2 > 0 such that

Pn0A1,n(ξ1)c = O
(
e−ξ2n

)
,

where

A1,n(ξ1) :=

{∫
N

πP(ϑ)πP(xn|ϑ)dϑ ≥ enξ1
∫
Nc
πP(ϑ)πP(xn|ϑ)dϑ

}
.

and

Qn
0A2,n(ξ1)c = O

(
e−nξ2

)
.

where

A2,n(ξ1) :=

{∫
N

πP(ϑ)πQ(xn,yn|ϑ)dϑ ≥ enξ1
∫
Nc
πP(ϑ)πQ(xn,yn|ϑ)dϑ

}
.

Remark 6. This is a large deviation property for posterior probabilities. The con-

dition holds under relatively mild and verifiable conditions (see e.g., Clarke, 1999,
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Proposition 2.1). It basically assumes that the posterior point estimator is consistent

since it is equivalent to the following condition:

Pn0
{∫
N
πP(θ|xn)dθ < enξ1

∫
N c
πP(θ|xn)dθ

}
= O

(
e−nξ2

)
, (27)

and

Qn
0

{∫
N

πQ(θ|xn,yn)dθ < enξ1
∫
Nc
πQ(θ|xn,yn)dθ

}
= O

(
e−nξ2

)
According to Theorem 2.2 in Clarke and Barron (1990), we know that Assumption

P and Assumption F imply a similar but weaker consistency result for posterior

distributions:

Pn0
{

1 < enξ1
∫
Nc
πP(θ|xn)

}
= o

(
1

n

)
,

and

Qn
0

{
1 < enξ1

∫
Nc
πQ(θ|xn,yn)

}
= o

(
1

n

)
.

Assumption PQ

The probability measure defined by the density πQ(θ|xn,yn) is dominated by the

probability measure defined by the density πP(θ|xn), for almost every xn,yn under

Q0.

Assumption MLE

The Maximum Likelihood Estimators (MLEs) θ̂P from the model Pθ and θ̂Q from the

model Qθ exist and are consistent for each θ ∈ Θ.

Remark 7. The standard sufficient conditions that guarantee Assumption MLE can

be found, for example, Wald (1949), among many others. Combined with Assumption

F, we can show the asymptotic normality of the MLEs:

√
n(θ̂P − θ) D−→ N(0, IP(θ)−1) under Pθ

and √
n(θ̂Q − θ) D−→ N(0, IQ(θ)−1) under Qθ.

And, the MLEs are asymptotically efficient; see, for example, van der Vaart (1998,

§ 5.5-5.6) and Lehmann and Casella (1998).

48



Assumption H

Define

HQ(ϑ|θ) :=

∫
πQ(x, y|θ) ln

1

πQ(x, y|ϑ)
dxdy,

and

HP(ϑ|θ) :=

∫
πP(x|θ) ln

1

πP(x|ϑ)
dx.

Define the sample correspondences as

ĤQ,n(ϑ|θ) :=
1

n

n∑
i=1

ln
1

πQ(xi, yi|ϑ)
, for (xi, yi) ∼ Qθ,

and

ĤP,n(ϑ|θ) :=
1

n

n∑
i=1

ln
1

πP(xi|ϑ)
, for xi ∼ Pθ.

Assume

ĤQ,n(θ|θ0)
L1(Q0)−−−−→ HQ(θ|θ0) uniformly in θ ∈ Θ,

and

ĤP,n(θ|θ0)
L1(P0)−−−−→ HP(θ|θ0) uniformly in θ ∈ Θ.

Remark 8. This condition is also adopted by Lin, Pittman, and Clarke (2007) to

guarantee the asymptotic approximation for the relative entropy.

Assumption ID

The parametric family of joint distributions Qθ,φ is sound, that is, the convergence of a

sequence of parameter values is equivalent to the weak convergence of the distributions

they index:

(θ, φ)→ (θ0, φ0)⇔ Qθ,φ → Qθ0,φ0 .

Of course, it also holds that

θ → θ0 ⇔ Pθ,φ0 → Pθ0,φ0 .

Remark 9. This assumption is a weak identifiability condition which implies that

θ1 6= θ2 ⇒ Qθ1,φ0 6= Qθ2,φ0 .

Assumption FF

The feature function f : Θ→ Rd′ with 1 ≤ d′ ≤ d is twice continuously differentiable.

We write f ≡ (f1, · · · , fd′). We assume that there exist d − d′ twice continuously

49



differentiable functions f2, · · · , fd on Θ such that F = (f1, f2, · · · , fd) : Θ→ Rd is a

one-to-one mapping (i.e. injection). Then, F is invertible and F (Θ) is also compact.

Remark 10. A simple sufficient condition for Assumption FF to hold for d′ = 1 is

that f is a proper and twice continuously differentiable function on Rd and ∂f(θ)
∂θ(1)

> 0

at each θ ∈ Rd. In this case, we can simply choose fk(θ) ≡ θ(k) for k = 2, · · · , d.

Then, the Jacobian determinant of F is nonzero at each θ ∈ and F is proper and twice

differentiable differential mapping Rd → Rd. According to the Hadamard’s Global

Inverse Function Theorem (see e.g., Krantz and Parks, 2013), we know that F is a

one-to-one mapping.

A.2 Heuristic Proofs

The following gives the intuition for the proofs of Theorems 1, 2, and 3. Formal

proofs are in the Internet Appendix. Without loss of generality, we assume that

θ ∈ R. Under some general regularity conditions (e.g., those in Appendix A.1),

suppose θ̂P and θ̂Q are the MLEs for models P0 and Q0 respectively, then both of

the unconstrained posterior πP(θ|xn) and the constrained posterior πQ(θ|xn,yn) are

asymptotically normal with means θ̂P and θ̂Q and variances ΣP
n(θ̂P) ≡ n−1I−1

P (θ0) and

ΣQ
n (θ̂Q) ≡ n−1I−1

Q (θ0), respectively. Thus, when n is large, the relative entropy between

the two posterior densities can be approximated by

DKL(πQ(θ|xn,yn)||πP(θ|xn))

=
1

2

(
IP(θ0)

IQ(θ0)
+ nIP(θ0)

(
θ̂P − θ̂Q

)2

− ln

(
IP(θ0)

IQ(θ0)

)
− 1

)
+ op(1) (28)

=
1

2
ln %a +

1

2

(
%−1
a − 1

)
+ nIP(θ0)

(
θ̂P − θ̂Q

)2

+ op(1)

D−→ 1

2
ln %a +

1

2
(1− %−1

a )(χ2
1 − 1). (29)

where %a = IP(θ0)/IQ(θ0) in the univariate case. A similar approximation to (28) is

also used in Lin, Pittman, and Clarke (2007) which also uses effective sample size to

quantify the amount of information. This is the heuristic proof of Theorem 1.

Next, consider the extra information gained when increasing the sample size of the
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data from n to n+m. By Definition 2, we know that

I(x̃m; θ|xn) =

∫
Xm×Θ

πP(x̃m, θ|xn) ln
πP(x̃m,xn|θ)πP(xn)

πP(x̃m,xn)πP(xn|θ)
dx̃mdθ

=

∫
Xm×Θ

πP(x̃m, θ|xn) ln
πP(x̃m,xn|θ)
πP(x̃m,xn)

dx̃mdθ +

∫
Θ

πP(θ|xn) ln
πP(xn)

πP(xn|θ)
.

(30)

When m and n go to infinity, we have for every θ ∈ Θ,

ln
πP(x̃m,xn|θ)
πP(x̃m,xn)

+
1

2
S̃m+nIP(θ)−1S̃m+n −

1

2
ln
m+ n

2π

L1(Pθ)−−−−→ ln
1

πP(θ)
+

1

2
ln |IP(θ)|,

(31)

and

ln
πP(xn|θ)
πP(xn)

+
1

2
SnIP(θ)−1Sn −

1

2
ln

n

2π

L1(Pθ)−−−−→ ln
1

πP(θ)
+

1

2
ln |IP(θ)|, (32)

where

Sn :=
1√
n

n∑
i=1

∂

∂θ
ln πP(xi|θ),

Sm :=
1√
m

m∑
i=1

∂

∂θ
ln πP(x̃i|θ),

and

S̃m+n :=

√
n

m+ n
Sn +

√
m

m+ n
Sm.

Equations (31) and (32) hold under general regularity conditions (see Appendix

A.1). For more detailed discussion on the approximation results above, see Clarke and

Barron (1990, 1994) and references therein.

According to the Markov inequality and the approximation in (31), if Θ is compact
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in R, it follows that∫
Xm×Θ

πP(x̃m, θ|xn) ln
πP(x̃m,xn|θ)
πP(x̃m,xn)

dx̃mdθ

= −
∫
Xm×Θ

πP(x̃m, θ|xn)
1

2
S̃m+nIP(θ)−1S̃m+ndx̃mdθ

+
1

2
ln
m+ n

2π
+

∫
Θ

πP(θ|xn) ln
1

πP(θ)
dθ +

1

2

∫
Θ

πP(θ|xn) ln |IP(θ)|dθ + op(1)

= − n

2(m+ n)

∫
Θ

πP(θ|xn)SnIP(θ)−1Sndθ − m

2(m+ n)

+
1

2
ln
m+ n

2π
+

∫
Θ

πP(θ|xn) ln
1

πP(θ)
dθ +

1

2

∫
Θ

πP(θ|xn) ln |IP(θ)|dθ + op(1)

(33)

According to the approximation in (32), if Θ is compact in R, it follows that∫
Θ

πP(θ|xn) ln
πP(xn|θ)
πP(xn)

dθ = −1

2

∫
Θ

πP(θ|xn)SnIP(θ)−1Sndθ +
1

2
ln

n

2π

+

∫
Θ

πP(θ|xn) ln
1

πP(θ)
dθ +

1

2

∫
Θ

πP(θ|xn) ln |IP(θ)|dθ + op(1),

(34)

Thus, from (30), (33), and (34), it follows that

I(x̃m; θ|xn) =
1

2
ln
m+ n

n
+

m

2(m+ n)

[∫
Θ

πP(θ|xn)SnIP(θ)−1Sndθ − 1

]
+ op(1),

(35)

and, using Taylor expansion of the score function Sn around the MLE θ̂P and applying

the normal approximation for the posterior πP(θ|xn)∫
Θ

πP(θ|xn)S ′nIP(θ)−1Sndθ

= nIP(θ0)−1

[
1

n

n∑
i=1

∂2

∂θ2
lnπP(xi|θ̂P)

]2 ∫
R
φ
(
θ|θ̂P, n−1IP(θ0)−1

)
(θ − θ̂P)2dθ + op(1)

where φ
(
θ|θ̂P, n−1IP(θ0)−1

)
denotes the probability density function for normal dis-

tribution N(θ̂P, n−1IP(θ0)).
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Under regularity conditions, we have

1

n

n∑
i=1

∂2

∂θ2
ln πP(xi|θ̂P)→ IP(θ0) in P0.

And, it holds that∫
Θ

φ
(
θ|θ̂P, n−1IP(θ0)−1

)
(θ − θ̂P)2dθ = n−1IP(θ0)−1.

Therefore, we have∫
Θ

πP(θ|xn)SnIP(θ)−1Sndθ = 1 + op(1), under P0.

This is the heuristic proof of Theorem 2. Thus, by the Definition of %KL(θ|xn,yn)

and the Slutsky’s Theorem, we have

ln(%KL (θ|xn,yn))
D−→ ln %a + (1− %−1

a )(χ2
1 − 1),

where χ2
1 is a chi-square random variable with degrees of freedom 1. Then, we have

proved Theorem 3 heuristically.

B Chernoff Rate, Fisher Information, and Detec-

tion Error Probability

B.1 Proof of Proposition 2

Let’s first show the following lemma. Recall that we defined in Proposition 2 that

θv := θ0 + n−1/2hv.

Lemma 1. Assume that Θ is compact and θ0 ∈ Θ. Suppose the product probability

measure with density function p(x1, · · · , xn|θ, φ0) := Πn
i=1p(xi|θ, φ0) where p(x|θ, φ0) is

continuously differentiable in θ for almost every x under p(x|θ0, φ0). We assume that

the Chi-square discrepancy Dχ2(p(x|θ0, φ0), p(x|θ, φ0)) = O(||θ− θ0||) when θ → θ0. If

the elements of the Fisher Information matrix I(θ) are well defined and continuous in
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θ, then

C∗(p(x1, · · · , xn|θv, φ0) : p(x1, · · · , xn|θ0, φ0)) =
h2

8
vT I(θ0)v + o(1),

where o(1) is uniform over ||v|| = 1.

Proof. First, we have the following identity∫
X

[Πn
i=1p(xi|θ0, φ0)]1−α [Πn

i=1p(xi|θv, φ0)]α dx1 · · · dxn

=

∫
X

Πn
i=1p(xi|θ0, φ0)eα

∑n
i=1[ln p(xi|θv,φ0)−ln p(xi|θ0,φ0)]dx1 · · · dxn. (36)

According to Lemma 7.6 in van der Vaart (1998), we know that the condition of

differentiability in quadratic mean holds for density functions in our case. Then,

following straightforward modifications of the proof for Theorem 7.2 in van der Vaart

(1998), we can strengthen the result in Theorem 7.2 to a LAN representation uniformly

over ||v|| = 1. More precisely, the Local Asymptotic Normality (LAN) condition holds

uniformly over ||v|| = 1, i.e.,

n∑
i=1

[ln p(Xi|θv, φ0)− ln p(Xi|θ0, φ0)]

= hvT

[
1√
n

n∑
i=1

∂

∂θ
ln p(Xi|θ0, φ0)

]
− h2

2
vT I(θ0)v +Rn(v), (37)

where sup||v||=1 E|Rn(v)|2 → 0, and X1, X2, · · · , Xn are i.i.d. from the distribution

p(x|θ0, φ0). In addition,

1√
n

n∑
i=1

∂

∂θ
ln p(Xi|θ0, φ0)

D−→ N (0, I(θ0)) .

Take expectation on both sides, we have

e
1
2
h2vT I(θ0)v = E

[
e
hvT

[
1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
]
−h

2

2
vT I(θ0)v+Rn(v)

]
,

and hence

Mn(α; v) ≤ 1.
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Define the Moment Generating Function (MGF) of
∑n

i=1 [ln p(Xi|θv, φ0)− ln p(Xi|θ0, φ0)]:

Mn(α; v) ≡ E
{
eα

∑n
i=1[ln p(Xi|θv,φ0)−ln p(Xi|θ0,φ0)]

}
=

∫
X

Πn
i=1p(xi|θ0, φ0)eα

∑n
i=1[ln p(xi|θv,φ0)−ln p(xi|θ0,φ0)]dx1 · · · dxn

= e−α
h2

2
vT I(θ0)vE

{
e
αhvT

[
1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
]}

+ εn(v),

where εn(v) = o(1) is uniform over α ∈ [0, 1] and ||v|| = 1. In fact,

sup
||v||=1

|εn(v)| ≡ sup
||v||=1

∣∣∣∣e−αh22 vT I(θ0)vE
{
e
αhvT

[
1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
] (
eαRn(v) − 1

)}∣∣∣∣
≤ sup
||v||=1

αe−α
h2

2
vT I(θ0)vE

{
e
αhvT

[
1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
]
+α[Rn(v)]+ |Rn(v)|

}
≤ sup
||v||=1

E
{
e

2αhvT
[

1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
]
+2α[Rn(v)]+

}
sup
||v||=1

E |Rn(v)|2

→ 0.

This is because

sup
||v||=1

E
{
e

2αhvT
[

1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
]
+2α[Rn(v)]+

}
< +∞,

which is due to the assumption that∫
p(x|θv, φ0)2

p(x|θ0, φ0)
dx = 1 +

1

2
Dχ2(p(x|θ0, φ0), p(x|θv, φ0)) ≤ 1 +

K

n
.

We define

M̂n(α,v) ≡ E
{
e
αhvT

[
1√
n

∑n
i=1

∂
∂θ

ln p(Xi|θ0,φ0)
]}

,

and hence

Mn(α; v) = e−α
h2

2
vT I(θ0)vM̂n(α,v) + o(1),

where o(1) is uniform over α ∈ [0, 1] and ||v|| = 1. Define z ≡ αv. Then the vector z

within the solid unit ball B[0, 1] ⊂ Rd has the one-to-one correspondence to the polar

coordinates (α,v) with α ∈ [0, 1] and ||v|| = 1. In other words, (α,v) are the polar

coordinates for the vector z ∈ B[0, 1]. It is obvious that the function M̂n(z) is convex

for each n and we know that the pointwise convergence for a sequence of convex

functions implies their uniform convergence to a convex function(see e.g., Rockafellar,
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1970). That is, uniformly over ||z|| ≤ 1,

M̂n(z)→ e
1
2
h2zT I(θ0)z.

Equivalently, uniformly over α ∈ [0, 1] and ||v|| = 1,

M̂n(α,v)→ e
1
2
h2α2vT I(θ0)v.

Therefore, it follows that, uniformly over α ∈ [0, 1] and ||v|| = 1,

Mn(α; v)→ e−
1
2
α(1−α)h2vT I(θ0)v.

We denote the Cumulant Generating Function (CGF) as

Λn(α; v) = logMn(α; v).

Based on the definition of Chernoff information in (25) and the identity in (36), we

know that

C∗(p(x1, · · · , xn|θv, φ0) : p(x1, · · · , xn|θ0, φ0))

≡ max
α∈[0,1]

− ln

∫
X

[Πn
i=1p(x|θ0, φ0)]α [Πn

i=1p(x|θv, φ0)]1−α dx1 · · · dxn

= max
α∈[0,1]

−Λn(α; v)→ max
α∈[0,1]

1

2
α(1− α)h2vT I(θ0)v =

1

8
h2vT I(θ0)v. (38)

In Equation (38) above, the convergence is uniform over ||v|| = 1. The uniform

convergence of −Λn(α; v) guarantees the convergence of maxima of −Λn(α) to the

maximum of 1
2α(1− α)h2vT I(θ0)v for any given v, which is 1

8h
2vT I(θ0)v, uniformly

in ||v|| = 1.

�

According to Lemma 1, for any probability density functions p(x1, · · · , xn|θ, φ0)

and q(x1, · · · , xn|θ, φ0) satisfying the conditions in Proposition 2, it holds that

C∗(p(x1, · · · , xn|θv, φ0) : p(x1, · · · , xn|θ0, φ0)) =
h2

8
vT IP(θ0)v + o(1)

and

C∗(q(x1, · · · , xn|θv, φ0) : q(x1, · · · , xn|θ0, φ0)) =
h2

8
vT IQ(θ0)v + o(1),
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where o(1) is uniform over ||v|| = 1 and the Fisher information matrixes are defined as

IP(θ) :=

∫
X

p(x|θ, φ0)

[
∂

∂θ
ln p(x|θ, φ0)

]2

dx

and

IQ(θ) :=

∫
X

q(x|θ, φ0)

[
∂

∂θ
ln q(x|θ, φ0)

]2

dx.

Therefore, we have

lim
n→∞

max
v∈Rd,||v||=1

C∗(q(x1, · · · , xn|θv, φ0) : q(x1, · · · , xn|θ, φ0))

C∗(p(x1, · · · , xn|θv, φ0) : p(x1, · · · , xn|θ, φ0))

= lim
n→∞

max
v∈Rd,||v||=1

h2

8
vT IQ(θ0)v + o(1)

h2

8
vT IP(θ0)v + o(1)

= max
v∈Rd,||v||=1

lim
n→∞

h2

8
vT IQ(θ0)v + o(1)

h2

8
vT IP(θ0)v + o(1)

, because o(1)

= max
v∈Rd,||v||=1

h2

8
vT IQ(θ0)v

h2

8
vT IP(θ0)v

= %a(θ).

B.2 Chernoff rate and detection error probability

This subsection is mainly based on Section 12.9 in Cover and Thomas (1991). Assume

X1, · · · , Xn i.i.d. ∼ Q. We have two hypothesis or classes: Q = P1 with prior π1 and

Q = P2 with prior π2. The overall probability of error (detection error probability) is

P n
e = π1E

(n)
1 + π2E

(n)
2 ,

where E
(n)
1 is the error probability when Q = P1 and E

(n)
2 is the error probability

when Q = P2. Define the best achievable exponent in the detection error probability is

D∗ = lim
n→∞

min
An∈Xn

− 1

n
log2 P

(n)
e , where An is the acceptance region.

The Chernoff’s Theorem shows that D∗ = C∗(P1 : P2). More precisely, Chernoff’s

Theorem states that the best achievable exponent in the detection error probability is

D∗, where

D∗ = DKL(Pα∗||P1) = DKL(Pα∗||P2),
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with

Pα =
Pα

1 (x)P 1−α
2 (x)∫

X
Pα

1 (x)P 1−α
2 (x)dx

and α∗ is the value of α such that

DKL(Pα∗ ||P1) = DKL(Pα∗ ||P2) = C∗(P1 : P2).

According to the Chernoff’s Theorem, intuitively, the best achievable exponent in the

detection error probability is

P (n)
e

.
= π12−nDKL(Pα∗ ||P1) + π22−nDKL(Pα∗ ||P2) = 2−nC

∗(P1:P2).

Combining (1) and (B.2), we can see another way of interpreting the Fisher information

ratio as the sample size ratio to achieve the same level of detection error probability

asymptotically.

C Disaster risk model

C.1 Proof of Proposition 3

The joint probability density for (g, r, z) in the unconstrained model is

πP(g, r, z|θ, φ) = pz(1− p)1−z

×

[
1

2πστ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(g − µ)2

σ2
+

(r − η)2

τ 2
− 2ρ(g − µ)(r − η)

στ

]}]1−z

×
[
1{−g>v}λ exp {−λ(−g − v)} 1√

2πν
exp

{
− 1

2ν2
(r − bg)2

}]z
. (39)

The Fisher information matrix for (p, λ) under the unconstrained model Pθ,φ is

IP(p, λ) =

 1
p(1− p) 0

0
p
λ2

 .
Next, to derive the probability density function πQ(g, r, z|θ, φ) in the constrained

model, we simply substitute the risk premium η in πP(g, r, z|θ, φ) (given by (39)) with

the asset pricing constraint (2.2) and add the indicator function for the restrictions
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on paramters:

πQ(g, r, z|θ, φ) = pz(1− p)1−z

×

[
1

2πστ
√

1− ρ2
exp

{
− 1

2(1− ρ2)

[
(g − µ)2

σ2
+

(r − η(θ, φ))2

τ2
− 2ρ(g − µ)(r − η(θ, φ))

στ

]}]1−z

×
[
1{−g>v}λ exp {−λ(−g − v)} 1√

2πν
exp

{
− 1

2ν2
(r − bg)2

}]z
1(η(θ,φ)>η∗,λ>γ), (40)

where

η(θ, φ) := γρστ − τ 2

2
+ eγµ−

γ2σ2

2 λ

(
eγv

λ− γ
− e

1
2
ν2 e(γ−b)v

λ+ b− γ

)
p

1− p
. (41)

Using the notation introduced by (3) and (3), we can express the Fisher information

for (p, λ) under the constrained model Qθ,φ (with relative risk aversion γ) as

IQ(p, λ; γ) =

 1
p(1−p) + ∆(λ)2

(1−ρ2)τ2
e2γµ−γ

2σ2

(1−p)3
p

(1−ρ2)τ2
e2γµ−γ

2σ2

(1−p)2 ∆(λ)∆̇(λ)

p
(1−ρ2)τ2

e2γµ−γ
2σ2

(1−p)2 ∆(λ)∆̇(λ) p
λ2

+ ∆̇(λ)2

(1−ρ2)τ2
e2γµ−γ2σ2 p2

1−p

 .
Following the definition in (13), the asymptotic information ratio is the largest

eigenvalue of the matrix I
−1/2
P (θ)IQ(θ)I

−1/2
P (θ). In this case, the eigenvalues and

eigenvectors are available in closed form. This gives us the formula for %a(p, λ) in (26)

and the worst-case direction vmax in (3). The minimum information ratio is 1, which

is obtained in the direction (4.1).

C.2 Finite Sample Measure for the Disaster Model

In this section, we provide the details about our tilted ABC method and its implemen-

tation algorithm for simulating the constrained posterior distribution πQ(θ|gn, rn, zn).

Moreover, we also derive the analytical formula for the conditional mutual information

I(g̃m, z̃m; θ|gn, zn) given the historical data gn, zn.

C.2.1 Derivation of I(g̃m, z̃m; θ|gn, zn)

The average relative entropy between πP(θ|xn, zn) and πP(θ|xn, zn, g̃m, z̃m) over distri-

bution πP(g̃m, z̃m|xn, zn), that is I(g̃m, z̃m; θ|gn, zn), has a nearly analytical formula.
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We derive it as follows.

πP(θ|gn, zn) = πP(p, λ|gn, zn) = πP(p|gn, zn)πP(λ|gn, zn)

= πP(p|κn)πP(λ|Λn, κn)

where κn =
∑

t≤n(1− zt) and Λn =
∑

t≤n zt(−gt − v). In fact,

πP(p|κn) =
p1/2+n−κn−1(1− p)1/2+κn−1

B(1/2 + n− κn, 1/2 + κn)
,

and

πP(λ|Λn, κn) =
1

Γ(n− κn)
Λn−κn
n λn−κn−1e−Λnλ.

With more data g̃m, z̃m, the posteriors become

πP(p, λ|gn, zn, g̃m, z̃m) = πP(p|κn + κ̃m)πP(λ|Λn + Λ̃m, κn + κ̃m)

with κ̃m =
∑

1≤t≤m(1− z̃t) and Λ̃m =
∑

1≤t≤m z̃t(−g̃t − v). More precisely, we have

πP(p|κn + κ̃m) =
p1/2+n+m−κn−κ̃m−1(1− p)1/2+κn+κ̃m−1

B(1/2 + n+m− κn − κ̃m, 1/2 + κn + κm)
,

and

πP(λ|Λn+Λ̃m, κn+κ̃m) =
1

Γ(n+m− κn − κ̃m)
(Λn+Λ̃m)n+m−κn−κ̃mλn+m−κn−κ̃m−1e−(Λn+Λ̃m)λ.

Thus, we know that the average relative entropy, i.e., conditional mutual information

given the historical data gn and zn:

I(g̃m, z̃m; θ|gn, zn)

= E(g̃m,z̃m)|(gn,rn)DKL(πP(p, λ|gn, zn, g̃m, z̃m)||πP(p, λ|gn, zn))

= E(g̃m,z̃m)|(gn,rn)DKL(πP(p|κn + κ̃m)||πP(p|κn))

+ E(g̃m,z̃m)|(gn,rn)DKL(πP(λ|Λn + Λ̃m, κn + κ̃m)||πP(λ|Λn, κn)) (42)

We are going to employ the following two simple facts regarding relative entropy

between two Beta distributions and two Gamma distributions, respectively. Denote

ψ(x) := Γ̇(x)/Γ(x) to be the Digamma function. Suppose f(x;α, β) is the probability
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density function for Beta distribution Beta(α, β), then

DKL(f(x;α0, β0)||f(x;α1, β1))

= ln

[
B(α1, β1)

B(α0, β0)

]
+ (α0 − α1)ψ(α0) + (β0 − β1)ψ(β0) + (α1 − α0 + β1 − β0)ψ(α0 + β0)

(43)

Suppose g(x;α, β) is the density function for Gamma distribution Gamma(α, β),

then

DKL(g(x;α0, β0)||g(x;α1, β1))

= (α0 − α1)ψ(α0)− ln Γ(α0) + ln Γ(α1) + α1(ln β0 − ln β1) + α0
β1 − β0

β0

. (44)

Applying (43) we know that

E(g̃m,z̃m)|(gn,rn)DKL(πP(p|κn + κ̃m)||πP(p|κn))

= E(g̃m,z̃m)|(gn,rn)

[
ln

(
B(1/2 + n− κn, 1/2 + κn)

B(1/2 + n+m− κn − κ̃n, 1/2 + κn + κ̃n)

)]
+ E(g̃m,z̃m)|(gn,rn) [(m− κ̃m)ψ(1/2 + n+m− κn − κ̃m)]

+ E(g̃m,z̃m)|(gn,rn) [κ̃mψ(1/2 + κ̃m + κn)]

−mψ(1 + n+m) (45)

Applying (44) we know that

E(g̃m,z̃m)|(gn,rn)DKL(πP(λ|Λn + Λ̃m, κn + κ̃m)||πP(λ|Λn, κn))

= E(g̃m,z̃m)|(gn,rn) [(m− κ̃m)ψ(n+m− κn − κ̃m)]

− E(g̃m,z̃m)|(gn,rn) [ln Γ(n+m− κn − κ̃m)− ln Γ(n− κn)]

+ E(g̃m,z̃m)|(gn,rn)

[
(n− κn) ln

Λn + Λ̃m

Λn

]

− E(g̃m,z̃m)|(gn,rn)

[
(n+m− κn − κ̃m)

Λ̃m

Λn + Λ̃m

]
(46)

Plugging (45) and (46) back into (42), we get the formula for the average relative

entropy I(g̃m, z̃m; θ|gn, zn).

Figure 9 illustrates the procedure for computing the finite sample information

ratio.
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Figure 9: Computing the finite sample information ratio. The two horizontal lines
represent the relative entropy between the constrained and unconstrained posterior
on θ for γ = 3 and 24. Their intersections with the conditional mutual information
I(x̃m; θ|xn) mark the value of the finite sample information ratio %KL.

C.2.2 ABC Method and Implementation

Given the special structure of our problem, we propose a tilted ABC method in the

hope of boosting the speed of our simulation. The algorithm described here is for the

case of joint estimation with the risk aversion coefficient γ. We illustrate the case

where γ has uniform prior on [1, 50]. The algorithm can be adapted easily for the

special case where the value of γ is fixed.

The posterior for the unconstrained model satisfies

θ, φ | r,g, z ∼ Beta (p|0.5 + n− κn, 0.5 + κn) (47)

⊗ [IWishartνn (Σ|Sn)⊗ N((µ, η)|µn,Σ)]

⊗Gamma

(
λ|n− κn,

n∑
t=1

zt(gt − v)

)
⊗ χ−2

(
ν2|n− κn, sn/(n− κn)

)
,
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where

xt = (gt, rt)
T , µn =

n∑
t=1

(1− zt)xt/
n∑
t=1

(1− zt), κn =
n∑
t=1

(1− zt), νn = κn − 1,

Sn =
n∑
t=1

(1− zt)(xt − µn)(xt − µn)T , sn =
n∑
t=1

zt(rt − bgt)2.

Define

g =
n∑
t=1

(1− zt)gt/κn and r =
n∑
t=1

(1− zt)rt/κn.

The posterior of the constrained model satisfies:

πQ(θ, φ|gn, rn, zn) ∝ pn−κn+1/2−1(1− p)κn+1/2−1 (48)

× |Σ|νn/2 exp

(
−1

2
tr(SnΣ−1)

)
×
√
κnσ

−1 exp
(
− κn

2σ2
(µ− g)2

)
× τ−1(1− ρ2)−1/2 × exp

(
− κn

2(1− ρ2)τ 2

(
η(θ, φ)− r − ρτ

σ
(µ− g)

)2
)

× 1(η(θ,φ)>η∗)

× 1(λ>γ)λ
n−κn−1 exp

(
−λ

n∑
t=1

zt(−gt − v)

)

× 1(ν>0)
1√

2π(ν2)3/2
exp

{
− 1

2ν2

n∑
t=1

zt (rt − bgt)2

}
× 1(1≤γ≤50)

Then, the posterior distribution will not change if we view the model in a different

way as follows:

r ∼ N
(
η(θ, φ) + ρ

τ

σ
(g − µ), τ 2(1− ρ2)

)
where η(θ, φ) > η∗,

with priors

γ ∼ Uniform[0, 50],

p ∼ Beta(n− κn + 1/2, κn + 1/2),

Σ ∼ IWishartνn (Σ|Sn) ,

µ|σ2 ∼ N(g, σ2/κn),
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λ ∼ Gamma

(
λ|n− κn,

n∑
t=1

zt(gt − v), λ > γ

)
,

ν2 ∼ χ−2
(
ν2|n− κn, sn/(n− κn)

)
.

The tilted ABC method is implemented as follows.

Algorithm We illustrate the algorithm for simulating samples from the posterior

(48) based ABC method. We choose the threshold in ABC algorithm as ε = τ̂ /n/100,

where τ̂ is the sample standard deviation of the observations r1, · · · , rn. Our tilted

ABC algorithm can be summarized as follows:

For step i = 1, · · · , N :

Repeat the following simulations and calculations:

(1) simulate γ̃ ∼ Uniform[1, 50],

(2) simulate p̃ ∼ Beta(n− κn + 1/2, κn + 1/2),

(3) simulate Σ̃ ∼ IWishartνn (Σ|Sn),

(4) simulate µ̃|σ̃2 ∼ N(g, σ2/κn),

(5) simulate λ̃ ∼ Gamma (λ|n− κn,
∑n

t=1 zt(gt − v)),

(6) simulate ν̃2 ∼ χ−2 (ν2|n− κn, sn/(n− κn)),

(7) calculate η̃ = η(θ̃, φ̃) with

θ̃ = (p̃, λ̃, µ̃, σ̃)

φ̃ = (τ̃ , ρ̃, ν̃)

(8) simulate r̃ ∼ N
(
η̃ + ρ̃ τ̃σ̃ (g − µ̃), τ̃ 2(1− ρ̃2)

)
,

Until (i) |r̃ − r| < ε and (ii) η̃ > η∗, we record

θ(i) = θ̃

φ(i) = φ̃

Set i = i+ 1, if i < N ; end the loop, if i = N .

Using this algorithm, we shall get simulated samples θ(1), · · · , θ(N) from the posterior

(48).
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